Le résultat suivant, qui répond à une question de Gelander et Souto dans un cas particulier, est démontré : si est le groupe libre de rang et est un sous-groupe de , la restriction des homomorphismes au sous-groupe fournit une application de la variété des caractères vers la variété des caractères ; cette application algébrique n’est bijective que si coïncide avec .
We answer a question of Gelander and Souto in the special case of the free group of rank . The result may be stated as follows. If is a free group of rank , and is a proper subgroup of , the restriction of homomorphisms to the subgroup defines a map from the character variety to the character variety ; this algebraic map never induces a bijection between these two character varieties.
Accepté le :
Publié le :
Serge Cantat 1
@article{AFST_2020_6_29_4_897_0, author = {Serge Cantat}, title = {Endomorphisms and bijections of the character variety $\chi (\protect \mathbf{F}_2,\protect \mathsf {SL}_2(\protect \mathbf{C}))$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {897--906}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {4}, year = {2020}, doi = {10.5802/afst.1648}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1648/} }
TY - JOUR AU - Serge Cantat TI - Endomorphisms and bijections of the character variety $\chi (\protect \mathbf{F}_2,\protect \mathsf {SL}_2(\protect \mathbf{C}))$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 897 EP - 906 VL - 29 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1648/ DO - 10.5802/afst.1648 LA - en ID - AFST_2020_6_29_4_897_0 ER -
%0 Journal Article %A Serge Cantat %T Endomorphisms and bijections of the character variety $\chi (\protect \mathbf{F}_2,\protect \mathsf {SL}_2(\protect \mathbf{C}))$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 897-906 %V 29 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1648/ %R 10.5802/afst.1648 %G en %F AFST_2020_6_29_4_897_0
Serge Cantat. Endomorphisms and bijections of the character variety $\chi (\protect \mathbf{F}_2,\protect \mathsf {SL}_2(\protect \mathbf{C}))$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 4, pp. 897-906. doi : 10.5802/afst.1648. https://afst.centre-mersenne.org/articles/10.5802/afst.1648/
[1] Bers and Hénon, Painlevé and Schroedinger, Duke Math. J., Volume 149 (2009) no. 3, pp. 411-460 | DOI | MR | Zbl
[2] Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2927-2978 | DOI | Numdam | Zbl
[3] Cubic surfaces of Markov type, Mat. Sb., N. Ser., Volume 93(135) (1974), p. 331-346, 487
[4] Polynomial Automorphisms, and the Jacobian Conjecture, Progress in Mathematics, 190, Birkhäuser, 2000 | MR | Zbl
[5] Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, Handbook of Teichmüller theory. Vol. II (IRMA Lectures in Mathematics and Theoretical Physics), Volume 13, European Mathematical Society, 2009, pp. 611-684 | DOI | MR | Zbl
[6] Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000, vi+310 pages | Zbl
[7] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer, 1977, xiv+339 pages | MR | Zbl
Cité par Sources :