logo AFST
A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan)
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 4, pp. 907-925.

Cet article introduit les gamma-triangles, qui sont liés aux F-triangles et H-triangles utilisés dans l’étude combinatoire des complexes d’amas, et dont ils sont en quelque sorte une version plus fondamentale. On démontre que les gamma-triangles s’expriment comme des sommes de gamma-vecteurs locaux, introduits par Athanasiadis comme un raffinement des h-vecteurs locaux de subdivisions simpliciales, dûs à Stanley. On calcule ensuite explicitement les gamma-triangles des complexes d’amas de type fini.

This article introduces Gamma-triangles, which are closely related to F-triangles and H-triangles that were used in the combinatorial study of cluster complexes, and in some sense are more fundamental. We prove that Gamma-triangles can be expressed as sums of local gamma-vectors, that were introduced by Athanasiadis as a refinement of the Stanley’s local h-vector of simplicial subdivisions. We compute explicitly the Gamma-triangles for cluster complexes of finite type.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1649
@article{AFST_2020_6_29_4_907_0,
     author = {Fr\'ed\'eric Chapoton},
     title = {A note on gamma triangles and local gamma vectors (with an appendix by {Alin} {Bostan)}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {907--925},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {4},
     year = {2020},
     doi = {10.5802/afst.1649},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1649/}
}
TY  - JOUR
AU  - Frédéric Chapoton
TI  - A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan)
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
DA  - 2020///
SP  - 907
EP  - 925
VL  - Ser. 6, 29
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1649/
UR  - https://doi.org/10.5802/afst.1649
DO  - 10.5802/afst.1649
LA  - en
ID  - AFST_2020_6_29_4_907_0
ER  - 
Frédéric Chapoton. A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan). Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 4, pp. 907-925. doi : 10.5802/afst.1649. https://afst.centre-mersenne.org/articles/10.5802/afst.1649/

[1] Christos A. Athanasiadis A survey of subdivisions and local h-vectors, The mathematical legacy of Richard P. Stanley, American Mathematical Society, 2016, pp. 39-51 | Zbl 1370.05225

[2] Christos A. Athanasiadis; Christina Savvidou The local h-vector of the cluster subdivision of a simplex, Sémin. Lothar. Comb., Volume 66 (2011), B66c, 21 pages | MR 2971012 | Zbl 1253.05150

[3] Petter Brändén Actions on permutations and unimodality of descent polynomials, Eur. J. Comb., Volume 29 (2008) no. 2, pp. 514-531 | Article | MR 2388387 | Zbl 1132.05002

[4] Leonard Carlitz Some expansions and convolution formulas related to MacMahon’s master theorem, SIAM J. Math. Anal., Volume 8 (1977) no. 2, pp. 320-336 | Article | MR 505539 | Zbl 0359.05003

[5] Frédéric Chapoton Enumerative properties of generalized associahedra, Sémin. Lothar. Comb., Volume 51 (2004), B51b, 16 pages | MR 2080386 | Zbl 1160.05342

[6] Frédéric Chapoton Sur le nombre de réflexions pleines dans les groupes de Coxeter finis, Bull. Belg. Math. Soc. Simon Stevin, Volume 13 (2006) no. 4, pp. 585-596 | Article | Zbl 1150.20023

[7] Frédéric Chapoton Stokes posets and serpent nests, Discrete Math. Theor. Comput. Sci., Volume 18 (2016) no. 3, 18, 30 pages | MR 3601367 | Zbl 1401.06002

[8] Sergey Fomin; Andrei Zelevinsky Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | Article | MR 2004457 | Zbl 1054.17024

[9] Sergey Fomin; Andrei Zelevinsky Y-systems and generalized associahedra, Ann. Math., Volume 158 (2003) no. 3, pp. 977-1018 | Article | MR 2031858 | Zbl 1057.52003

[10] Sergey Fomin; Andrei Zelevinsky Flag subdivisions and γ-vectors, Pac. J. Math., Volume 259 (2012) no. 2, pp. 257-278 | MR 2988491

[11] Swiatoslaw R. Gal Real root conjecture fails for five- and higher-dimensional spheres, Discrete Comput. Geom., Volume 34 (2005) no. 2, pp. 269-284 | MR 2155722 | Zbl 1085.52005

[12] Alexander Garver; Thomas McConville Enumerative properties of Grid-Associahedra (2017) (https://arxiv.org/abs/1705.04901) | Zbl 1385.05087

[13] Eric Katz; Alan Stapledon Local h-polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | Article | MR 3415684 | Zbl 1325.05192

[14] Shirley Law Combinatorial realization of the Hopf algebra of sashes, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) (Discrete Mathematics and Theoretical Computer Science), The Association, 2014, pp. 621-632 | MR 3466408 | Zbl 1393.05302

[15] Thibault Manneville; Vincent Pilaud Geometric Realizations of the Accordion Complex of a Dissection, Discrete Comput. Geom., Volume 61 (2019) no. 3, pp. 507-540 | Article | MR 3918546 | Zbl 1417.52015

[16] Yann Palu; Vincent Pilaud; Pierre-Guy Plamondon Non-kissing complexes and tau-tilting for gentle algebras (2017) (https://arxiv.org/abs/1707.07574)

[17] Nathan Reading; David E. Speyer Cambrian fans, J. Eur. Math. Soc., Volume 11 (2009) no. 2, pp. 407-447 | Article | MR 2486939 | Zbl 1213.20038

[18] Kyoji Saito The zero loci of F-triangles, Acta Math. Vietnam., Volume 42 (2017) no. 2, pp. 209-236 | Article | MR 3633109 | Zbl 1368.05160

[19] Richard P. Stanley Subdivisions and local h-vectors, J. Am. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | MR 1157293 | Zbl 0768.05100

[20] Richard P. Stanley Combinatorics and commutative algebra, Progress in Mathematics, Volume 41, Birkhäuser, 1996, x+164 pages | MR 1453579 | Zbl 0838.13008

[21] Mirkó Visontai Some remarks on the joint distribution of descents and inverse descents, Electron. J. Comb., Volume 20 (2013) no. 1, 52, 12 pages | MR 3040614 | Zbl 1267.05015

Cité par Sources :