Notes on Umemura polynomials
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1091-1118.

Nous donnons un survol des polynômes spéciaux associés aux solutions algébriques de la sixième équation de Painlevé, et formulons une conjecture concernant une formule combinatoire pour les polynômes d’Umemura associés à une classe de solutions algébriques de P VI avec deux paramètres discrets.

We give a survey on special polynomials associated with algebraic solutions of the sixth Painlevé equation, and formulate a conjecture regarding a combinatorial formula for Umemura polynomials associated with a class of algebraic solutions of P VI with two discrete parameters.

Publié le :
DOI : 10.5802/afst.1658
Classification : 33C45, 05E35, 34M55
Mots clés : Umemura polynomial, Painlevé equation, Toda equation, special polynomial

Masatoshi Noumi 1

1 Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2020_6_29_5_1091_0,
     author = {Masatoshi Noumi},
     title = {Notes on {Umemura} polynomials},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1091--1118},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {5},
     year = {2020},
     doi = {10.5802/afst.1658},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1658/}
}
TY  - JOUR
AU  - Masatoshi Noumi
TI  - Notes on Umemura polynomials
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 1091
EP  - 1118
VL  - 29
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1658/
DO  - 10.5802/afst.1658
LA  - en
ID  - AFST_2020_6_29_5_1091_0
ER  - 
%0 Journal Article
%A Masatoshi Noumi
%T Notes on Umemura polynomials
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 1091-1118
%V 29
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1658/
%R 10.5802/afst.1658
%G en
%F AFST_2020_6_29_5_1091_0
Masatoshi Noumi. Notes on Umemura polynomials. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1091-1118. doi : 10.5802/afst.1658. https://afst.centre-mersenne.org/articles/10.5802/afst.1658/

[1] Galina Filipuk On the middle convolution and birational symmetries of the sixth Painlevé equation, Kumamoto J. Math., Volume 19 (2006), pp. 15-23 | MR | Zbl

[2] Yoshishige Haraoka; Galina Filipuk Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc., Volume 76 (2007), pp. 438-450 | DOI | MR | Zbl

[3] H. Kageyama Painlevé equations and Umemura polynomials, 2003 (Master’s thesis, Kobe University, in Japanese)

[4] Anatol N. Kirillov; Makoto Taneda Generalized Umemura polynomials, Rocky Mt. J. Math., Volume 32 (2002) no. 2, pp. 691-702 in Conference on Special Functions (Tempe, AZ, 2000) | MR | Zbl

[5] Anatol N. Kirillov; Makoto Taneda Generalized Umemura polynomials and the Hirota-Miwa equation, MathPhys odyssey, 2001 (Progress in Mathematics), Volume 23, Birkhäuser, 2002, pp. 313-331 | DOI | MR | Zbl

[6] Oleg Lisovyy; Yuriy Tykhyy Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys., Volume 85 (2014), pp. 124-163 | DOI | Zbl

[7] Ian G. Macdonald Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, 1995 | Zbl

[8] Tetsu Masuda On a class of algebraic solutions to the Painlevé VI equation, Funkc. Ekvacioj, Volume 46 (2003) no. 1, pp. 121-171 | DOI | MR | Zbl

[9] Masatoshi Noumi Painlevé Equations through Symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, 2004, x+156 pages | Zbl

[10] Masatoshi Noumi; Soichi Okada; Kazuo Okamoto; Hiroshi Umemura Special polynomials associated with the Painlevé equations II, Integrable Systems and Algebraic Geometry (Kyoto/Kobe 1997), World Scientific, 1997, pp. 349-372 | Zbl

[11] Masatoshi Noumi; Yasuhiko Yamada Birational Weyl group action arising from a nilpotent Poisson algebra, Physics and combinatorics 1999 (Nagoya), World Scientific, 2001, pp. 287-319 | DOI | Zbl

[12] Masatoshi Noumi; Yasuhiko Yamada A new Lax pair for the sixth Painlevé equation associated with 𝔰𝔬 ^(8), Microlocal Analysis and complex Fourier Analysis, World Scientific, 2002, pp. 238-252 | DOI | Zbl

[13] Dmitrii P. Novikov Integral transformation of solutions of a Fuchs-class equation, that corresponds to the Okamoto transformation of the Painlevé VI equation, Theor. Math. Phys., Volume 146 (2006) no. 3, pp. 295-303 | DOI | MR

[14] Kazuo Okamoto Studies on the Painlevé equations I. Sixth Painlevé equation P VI , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 337-381 | DOI | Zbl

[15] Makoto Taneda Polynomials associated with an algebraic solution of the sixth Painlevé equation, Jpn. J. Math., Volume 27 (2001) no. 2, pp. 257-274 | DOI | MR | Zbl

[16] Hiroshi Umemura Irreducibility of the first differential equation of Painlevé, Algebraic Geometry and Commutative Algebra, Volume 771, Konokuniya Company Ltd., 1988, pp. 771-789 | DOI | Zbl

[17] Hiroshi Umemura Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J., Volume 117 (1990), pp. 125-171 | DOI | Zbl

[18] Hiroshi Umemura Painlevé equations and classical functions, Sugaku Expo., Volume 11 (1995) no. 4, pp. 77-100 translation of Sūgaku 47 (1995), p. 341-359 | Zbl

[19] Hiroshi Umemura One hundred years of the Painlevé equations, Sūgaku, Volume 51 (1999), pp. 395-420 (in Japanese)

[20] Hiroshi Umemura Special polynomials associated with the Painlevé equations I, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 5, pp. 1063-1089 Workshop on the Painlevé equations (Montreal, Canada, 1996)

[21] T. Yoshida Determinant formula for Umemura polynomials, 2004 (Master’s thesis, Kobe University, in Japanese)

Cité par Sources :