Nous donnons un survol des polynômes spéciaux associés aux solutions algébriques de la sixième équation de Painlevé, et formulons une conjecture concernant une formule combinatoire pour les polynômes d’Umemura associés à une classe de solutions algébriques de avec deux paramètres discrets.
We give a survey on special polynomials associated with algebraic solutions of the sixth Painlevé equation, and formulate a conjecture regarding a combinatorial formula for Umemura polynomials associated with a class of algebraic solutions of with two discrete parameters.
Mots clés : Umemura polynomial, Painlevé equation, Toda equation, special polynomial
Masatoshi Noumi 1
@article{AFST_2020_6_29_5_1091_0, author = {Masatoshi Noumi}, title = {Notes on {Umemura} polynomials}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1091--1118}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {5}, year = {2020}, doi = {10.5802/afst.1658}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1658/} }
TY - JOUR AU - Masatoshi Noumi TI - Notes on Umemura polynomials JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 1091 EP - 1118 VL - 29 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1658/ DO - 10.5802/afst.1658 LA - en ID - AFST_2020_6_29_5_1091_0 ER -
%0 Journal Article %A Masatoshi Noumi %T Notes on Umemura polynomials %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 1091-1118 %V 29 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1658/ %R 10.5802/afst.1658 %G en %F AFST_2020_6_29_5_1091_0
Masatoshi Noumi. Notes on Umemura polynomials. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 5, pp. 1091-1118. doi : 10.5802/afst.1658. https://afst.centre-mersenne.org/articles/10.5802/afst.1658/
[1] On the middle convolution and birational symmetries of the sixth Painlevé equation, Kumamoto J. Math., Volume 19 (2006), pp. 15-23 | MR | Zbl
[2] Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc., Volume 76 (2007), pp. 438-450 | DOI | MR | Zbl
[3] Painlevé equations and Umemura polynomials, 2003 (Master’s thesis, Kobe University, in Japanese)
[4] Generalized Umemura polynomials, Rocky Mt. J. Math., Volume 32 (2002) no. 2, pp. 691-702 in Conference on Special Functions (Tempe, AZ, 2000) | MR | Zbl
[5] Generalized Umemura polynomials and the Hirota-Miwa equation, MathPhys odyssey, 2001 (Progress in Mathematics), Volume 23, Birkhäuser, 2002, pp. 313-331 | DOI | MR | Zbl
[6] Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys., Volume 85 (2014), pp. 124-163 | DOI | Zbl
[7] Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, 1995 | Zbl
[8] On a class of algebraic solutions to the Painlevé VI equation, Funkc. Ekvacioj, Volume 46 (2003) no. 1, pp. 121-171 | DOI | MR | Zbl
[9] Painlevé Equations through Symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, 2004, x+156 pages | Zbl
[10] Special polynomials associated with the Painlevé equations II, Integrable Systems and Algebraic Geometry Kyoto/Kobe 1997, World Scientific, 1997, pp. 349-372 | Zbl
[11] Birational Weyl group action arising from a nilpotent Poisson algebra, Physics and combinatorics 1999 (Nagoya), World Scientific, 2001, pp. 287-319 | DOI | Zbl
[12] A new Lax pair for the sixth Painlevé equation associated with , Microlocal Analysis and complex Fourier Analysis, World Scientific, 2002, pp. 238-252 | DOI | Zbl
[13] Integral transformation of solutions of a Fuchs-class equation, that corresponds to the Okamoto transformation of the Painlevé VI equation, Theor. Math. Phys., Volume 146 (2006) no. 3, pp. 295-303 | DOI | MR
[14] Studies on the Painlevé equations I. Sixth Painlevé equation , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 337-381 | DOI | Zbl
[15] Polynomials associated with an algebraic solution of the sixth Painlevé equation, Jpn. J. Math., Volume 27 (2001) no. 2, pp. 257-274 | DOI | MR | Zbl
[16] Irreducibility of the first differential equation of Painlevé, Algebraic Geometry and Commutative Algebra, Volume 771, Konokuniya Company Ltd., 1988, pp. 771-789 | DOI | Zbl
[17] Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J., Volume 117 (1990), pp. 125-171 | DOI | Zbl
[18] Painlevé equations and classical functions, Sugaku Expo., Volume 11 (1995) no. 4, pp. 77-100 translation of Sūgaku 47 (1995), p. 341-359 | Zbl
[19] One hundred years of the Painlevé equations, Sūgaku, Volume 51 (1999), pp. 395-420 (in Japanese)
[20] Special polynomials associated with the Painlevé equations I, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 5, pp. 1063-1089 Workshop on the Painlevé equations (Montreal, Canada, 1996)
[21] Determinant formula for Umemura polynomials, 2004 (Master’s thesis, Kobe University, in Japanese)
Cité par Sources :