Nadel–Nakano vanishing theorems of vector bundles with singular Hermitian metrics
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 1, pp. 63-81.

We study a singular Hermitian metric of a vector bundle. First, we prove that the sheaf of locally square integrable holomorphic sections of a vector bundle with a singular Hermitian metric, which is a higher rank analog of a multiplier ideal sheaf, is coherent under some assumptions. Second, we prove a Nadel–Nakano type vanishing theorem of a vector bundle with a singular Hermitian metric. We do not use an approximation technique of a singular Hermitian metric. We apply these theorems to a singular Hermitian metric induced by holomorphic sections and a big vector bundle, and we obtain a generalization of Griffiths’ vanishing theorem. Finally, we show a generalization of Ohsawa’s vanishing theorem.

Nous étudions une métrique hermitienne singulière d’un fibré vectoriel. Premièrement, nous montrons que le faisceau de sections holomorphes localement carrées et holomorphes d’un faisceau vectoriel avec une métrique hermitienne singulière, qui est un analogue de rang supérieur d’un faisceau d’idéaux multiplicateurs, est cohérent sous certaines hypothèses. Deuxièmement, nous prouvons un théorème d’annulation de type Nadel–Nakano d’un faisceau de vecteurs avec une métrique hermitienne singulière Nous n’utilisons pas une technique d’approximation d’une métrique hermitienne singulière. Nous appliquons ces théorèmes à une métrique hermitienne singulière induite par des sections holomorphes et un fibré vectoriel gros, et nous obtenons une généralisation du théorème d’annulation de Griffiths. Enfin, nous montrons une généralisation du théorème d’annulation d’Ohsawa.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1666

Masataka Iwai 1

1 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_1_63_0,
     author = {Masataka Iwai},
     title = {Nadel{\textendash}Nakano vanishing theorems of vector bundles with singular {Hermitian} metrics},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {63--81},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {1},
     year = {2021},
     doi = {10.5802/afst.1666},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1666/}
}
TY  - JOUR
AU  - Masataka Iwai
TI  - Nadel–Nakano vanishing theorems of vector bundles with singular Hermitian metrics
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 63
EP  - 81
VL  - 30
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1666/
DO  - 10.5802/afst.1666
LA  - en
ID  - AFST_2021_6_30_1_63_0
ER  - 
%0 Journal Article
%A Masataka Iwai
%T Nadel–Nakano vanishing theorems of vector bundles with singular Hermitian metrics
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 63-81
%V 30
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1666/
%R 10.5802/afst.1666
%G en
%F AFST_2021_6_30_1_63_0
Masataka Iwai. Nadel–Nakano vanishing theorems of vector bundles with singular Hermitian metrics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 1, pp. 63-81. doi : 10.5802/afst.1666. https://afst.centre-mersenne.org/articles/10.5802/afst.1666/

[1] Thomas Bauer; Sándor J. Kovács; Alex Küronya; Ernesto C. Mistretta; Tomasz Szemberg; Stefano Urbinati On positivity and base loci of vector bundles, Eur. J. Math., Volume 1 (2015) no. 2, pp. 229-249 | DOI | MR | Zbl

[2] Bo Berndtsson Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl

[3] Bo Berndtsson; Mihai Păun Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | MR | Zbl

[4] Junyan Cao; Mihai Păun Kodaira dimension of algebraic fiber spaces over abelian varieties, Invent. Math., Volume 207 (2017) no. 1, pp. 345-387 | MR | Zbl

[5] Mark Andrea A. de Cataldo Singular Hermitian metrics on vector bundles, J. Reine Angew. Math., Volume 502 (1998), pp. 93-122 | MR | Zbl

[6] Jean-Pierre Demailly Complex analytic and differential geometry (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[7] Jean-Pierre Demailly Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 457-511 | DOI | Numdam | Zbl

[8] Jean-Pierre Demailly Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press; Higher Education Press, 2012, viii+231 pages | MR | Zbl

[9] Osamu Fujino A transcendental approach to Kollár’s injectivity theorem, Osaka J. Math., Volume 49 (2012) no. 3, pp. 833-852 | Zbl

[10] Osamu Fujino A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math., Volume 681 (2013), pp. 149-174 | Zbl

[11] Osamu Fujino; Shin-Ichi Matsumura Injectivity theorem for pseudo-effective line bundles and its applications (2017) (https://arxiv.org/abs/1605.02284)

[12] Hans Grauert; Reinhold Remmert Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, 265, Springer, 1984, xviii+249 pages | MR | Zbl

[13] Phillip A. Griffiths Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), University of Tokyo Press, 1969, pp. 185-251 | Zbl

[14] Christopher Hacon; Mihnea Popa; Christian Schnell Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Puaun, Local and global methods in algebraic geometry (Contemporary Mathematics), Volume 712, American Mathematical Society, 2018, pp. 143-195 | Zbl

[15] Genki Hosono Approximations and examples of singular Hermitian metrics on vector bundles, Ark. Mat., Volume 55 (2017) no. 1, pp. 131-153 | DOI | MR | Zbl

[16] Shin-Ichi Matsumura A vanishing theorem of Kollár-Ohsawa type, Math. Ann., Volume 366 (2016) no. 3-4, pp. 1451-1465 | DOI | MR | Zbl

[17] Takeo Ohsawa Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci., Volume 20 (1984) no. 1, pp. 21-38 | DOI | Zbl

[18] Mihai Păun Singular Hermitian metrics and positivity of direct images of pluricanonical bundles, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 519-553 | MR | Zbl

[19] Mihai Păun; Shigeharu Takayama Positivity of twisted relative pluricanonical bundles and their direct images, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 211-272 | DOI | MR | Zbl

[20] Hossein Raufi Singular hermitian metrics on holomorphic vector bundles, Ark. Mat., Volume 53 (2015) no. 2, pp. 359-382 | DOI | MR | Zbl

Cited by Sources: