We consider the divergent fractional Laplace operator presented in [5] and we prove three types of results.
Firstly, we show that any given function can be locally shadowed by a solution of a divergent fractional Laplace equation which is also prescribed in a neighborhood of infinity.
Secondly, we take into account the Dirichlet problem for the divergent fractional Laplace equation, proving the existence of a solution and characterizing its multiplicity.
Finally, we take into account the case of nonlinear equations, obtaining a new approximation results.
These results maintain their interest also in the case of functions for which the fractional Laplacian can be defined in the usual sense.
Nous considérons le Laplacien fractionnaire divergent introduit dans [5] et démontrons trois types de résultats.
Premièrement, nous montrons que toute fonction donnée peut être approchée localement par une solution d’une équation de Laplace fractionnaire divergente, dont les valeurs sont de plus prescrites au voisinage de l’infini.
Deuxièmement, nous démontrons l’existence de solutions au problème de Dirichlet pour le Laplacien fractionnaire divergent, et caractérisons leur multiplicité.
Enfin, nous obtenons des résultats d’approximation dans le cadre d’équations non linéaires, résultats qui sont nouveaux même lorsque le Laplacien fractionnaire peut être défini au sens usuel.
Serena Dipierro 1; Ovidiu Savin 2; Enrico Valdinoci 1
@article{AFST_2021_6_30_2_255_0, author = {Serena Dipierro and Ovidiu Savin and Enrico Valdinoci}, title = {On divergent fractional {Laplace} equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {255--265}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {2}, year = {2021}, doi = {10.5802/afst.1673}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1673/} }
TY - JOUR AU - Serena Dipierro AU - Ovidiu Savin AU - Enrico Valdinoci TI - On divergent fractional Laplace equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 255 EP - 265 VL - 30 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1673/ DO - 10.5802/afst.1673 LA - en ID - AFST_2021_6_30_2_255_0 ER -
%0 Journal Article %A Serena Dipierro %A Ovidiu Savin %A Enrico Valdinoci %T On divergent fractional Laplace equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 255-265 %V 30 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1673/ %R 10.5802/afst.1673 %G en %F AFST_2021_6_30_2_255_0
Serena Dipierro; Ovidiu Savin; Enrico Valdinoci. On divergent fractional Laplace equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 255-265. doi : 10.5802/afst.1673. https://afst.centre-mersenne.org/articles/10.5802/afst.1673/
[1] Local density of Caputo-stationary functions in the space of smooth functions, ESAIM, Control Optim. Calc. Var., Volume 23 (2017) no. 4, pp. 1361-1380 | DOI | MR | Zbl
[2] Local density of solutions to fractional equations, De Gruyter Studies in Mathematics, 74, Walter de Gruyter, 2019 | Zbl
[3] Local density of Caputo-stationary functions of any order, Complex Var. Elliptic Equ., Volume 65 (2020), pp. 1115-1138 | DOI | MR | Zbl
[4] All functions are locally -harmonic up to a small error, J. Eur. Math. Soc., Volume 19 (2017) no. 4, pp. 957-966 | DOI | MR | Zbl
[5] Definition of fractional Laplacian for functions with polynomial growth, Rev. Mat. Iberoam., Volume 35 (2019) no. 4, pp. 1079-1122 | DOI | MR | Zbl
[6] Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal., Volume 29 (2019) no. 2, pp. 1428-1455 | DOI | MR | Zbl
[7] Elliptic partial differential equations from an elementary viewpoint (2021) (https://arxiv.org/abs/2101.07941)
[8] On the paper “All functions are locally -harmonic up to a small error” by Dipierro, Savin, and Valdinoci (2018) (https://arxiv.org/abs/1810.07648)
[9] The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., Volume 101 (2014) no. 3, pp. 275-302 | DOI | MR | Zbl
[10] Exponential instability in the fractional Calderón problem, Inverse Probl., Volume 34 (2018) no. 4, 045003, 21 pages | DOI | Zbl
[11] All functions are (locally) -harmonic (up to a small error) – and applications, Partial differential equations and geometric measure theory (Lecture Notes in Mathematics), Volume 2211, Springer, 2018, pp. 197-214 | DOI | MR | Zbl
Cited by Sources: