We review the current state of the art concerning the characterization of traces of the spaces of Sobolev mappings with values into a compact manifold . In particular, we exhibit a new analytical obstruction to the extension, which occurs when is an integer and the homotopy group is non trivial. On the positive side, we prove the surjectivity of the trace operator when the fundamental group is finite and . We present several open problems connected to the extension problem.
Nous examinons l’état de l’art de la caractérisation des traces des espaces d’applications Sobolev à valeurs valeurs dans une variété compacte . En particulier, nous mettons en évidence une nouvelle obstruction analytique à l’extension, qui se produit lorsque est un entier et que le groupe d’homotopie n’est pas trivial. Du côté positif, nous démontrons la surjectivité de l’opérateur de trace lorsque le groupe fondamental est fini et que . Nous présentons plusieurs problèmes ouverts liés au problème d’extension.
Keywords: Trace spaces, fractional Sobolev spaces, homotopy groups, lifting of Sobolev mappings.
Petru Mironescu 1; Jean Van Schaftingen 2
@article{AFST_2021_6_30_2_281_0, author = {Petru Mironescu and Jean Van Schaftingen}, title = {Trace theory for {Sobolev} mappings into a manifold}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {281--299}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {2}, year = {2021}, doi = {10.5802/afst.1675}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1675/} }
TY - JOUR AU - Petru Mironescu AU - Jean Van Schaftingen TI - Trace theory for Sobolev mappings into a manifold JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 281 EP - 299 VL - 30 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1675/ DO - 10.5802/afst.1675 LA - en ID - AFST_2021_6_30_2_281_0 ER -
%0 Journal Article %A Petru Mironescu %A Jean Van Schaftingen %T Trace theory for Sobolev mappings into a manifold %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 281-299 %V 30 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1675/ %R 10.5802/afst.1675 %G en %F AFST_2021_6_30_2_281_0
Petru Mironescu; Jean Van Schaftingen. Trace theory for Sobolev mappings into a manifold. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 281-299. doi : 10.5802/afst.1675. https://afst.centre-mersenne.org/articles/10.5802/afst.1675/
[1] Sobolev spaces, Pure and Applied Mathematics, 140, Academic Press Inc., 2003, xiv+305 pages | Zbl
[2] A characterization of maps in which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 4, pp. 269-286 | DOI | Numdam | MR
[3] The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991) no. 3-4, pp. 153-206 | DOI | MR | Zbl
[4] A new obstruction to the extension problem for Sobolev maps between manifolds, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 155-183 | DOI | MR | Zbl
[5] Perspectives in nonlinear partial differential equations, Perspectives in nonlinear partial differential equations (Contemporary Mathematics), Volume 446, American Mathematical Society, 2007, pp. 125-152 | DOI | MR | Zbl
[6] A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds, Nematics. Mathematical and physical aspects (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 332, Kluwer Academic Publishers, 1991, pp. 15-23 | MR | Zbl
[7] Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 4, pp. 475-491 | DOI | MR | Zbl
[8] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86 | DOI | MR | Zbl
[9] maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math., Inst. Hautes Étud. Sci. (2004) no. 99, pp. 1-115 | DOI | Numdam | MR | Zbl
[10] Strong approximation of fractional Sobolev maps, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 133-153 | DOI | MR | Zbl
[11] Sobolev maps to the circle (in preparation) | Zbl
[12] Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001) no. 4, pp. 387-404 | DOI | MR | Zbl
[13] Density in , J. Funct. Anal., Volume 269 (2015) no. 7, pp. 2045-2109 | DOI | Zbl
[14] Degree theory and BMO, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | Zbl
[15] Real analysis, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser; Springer, 2016, xxxii+596 pages | DOI | Zbl
[16] Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili, Rend. Semin. Mat. Univ. Padova, Volume 27 (1957), pp. 284-305 | Numdam | MR | Zbl
[17] Mappings minimizing the norm of the gradient, Commun. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 555-588 | DOI | MR | Zbl
[18] Algebraic topology, Cambridge University Press, 2002, xii+544 pages | Zbl
[19] Obstructions to the extension problem of Sobolev mappings, Topol. Methods Nonlinear Anal., Volume 21 (2003) no. 2, pp. 345-368 | DOI | MR | Zbl
[20] Sur une classe d’espaces d’interpolation, Publ. Math., Inst. Hautes Étud. Sci. (1964) no. 19, pp. 5-68 | DOI | Numdam | MR | Zbl
[21] Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, 2011, xxviii+866 pages | DOI | MR
[22] On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms, J. Math. Pures Appl., Volume 81 (2002) no. 9, pp. 877-884 | DOI | MR | Zbl
[23] Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., Theory Methods Appl., Volume 119 (2015), pp. 354-381 | DOI | MR | Zbl
[24] Lifting of fractional Sobolev maps to compact covering spaces (https://arxiv.org/abs/1907.01373, to appear in Anal. PDE)
[25] Uniform boundedness principles for Sobolev maps into manifolds, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 2, pp. 417-449 | DOI | MR | Zbl
[26] The imbedding problem for Riemannian manifolds, Ann. Math., Volume 63 (1956), pp. 20-63 | DOI | MR | Zbl
[27] A counter-example connected with Gagliardo’s trace theorem, Commentat. Math., Volume 2 (1979), pp. 277-282 | Zbl
[28] Dense subsets of , Ann. Global Anal. Geom., Volume 18 (2000) no. 5, pp. 517-528 | DOI | MR | Zbl
[29] Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math., Volume 12 (1986) no. 4, pp. 313-346 | DOI | MR | Zbl
[30] A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982) no. 2, pp. 307-335 | MR | Zbl
[31] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 253-268 | MR | Zbl
[32] Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova, Volume 60 (1961), pp. 282-303 translation in Trans. Am. Math. Soc. 87 (1970), p. 121-145 | MR
[33] Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math., Volume 160 (1988) no. 1-2, pp. 1-17 | DOI | MR | Zbl
Cited by Sources: