Trace theory for Sobolev mappings into a manifold
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 281-299.

We review the current state of the art concerning the characterization of traces of the spaces W 1,p (𝔹 m-1 ×(0,1),𝒩) of Sobolev mappings with values into a compact manifold 𝒩. In particular, we exhibit a new analytical obstruction to the extension, which occurs when p<m is an integer and the homotopy group π p (𝒩) is non trivial. On the positive side, we prove the surjectivity of the trace operator when the fundamental group π 1 (𝒩) is finite and π 2 (𝒩)π p-1 (𝒩){0}. We present several open problems connected to the extension problem.

Nous examinons l’état de l’art de la caractérisation des traces des espaces W 1,p (𝔹 m-1 ×(0,1),𝒩) d’applications Sobolev à valeurs valeurs dans une variété compacte 𝒩. En particulier, nous mettons en évidence une nouvelle obstruction analytique à l’extension, qui se produit lorsque p<m est un entier et que le groupe d’homotopie π p (𝒩) n’est pas trivial. Du côté positif, nous démontrons la surjectivité de l’opérateur de trace lorsque le groupe fondamental π 1 (𝒩) est fini et que π 2 (𝒩)π p-1 (𝒩){0}. Nous présentons plusieurs problèmes ouverts liés au problème d’extension.

Published online:
DOI: 10.5802/afst.1675
Classification: 46T10, 46E35, 58D15
Keywords: Trace spaces, fractional Sobolev spaces, homotopy groups, lifting of Sobolev mappings.

Petru Mironescu 1; Jean Van Schaftingen 2

1 Université Lyon 1, CNRS UMR 5208 Institut Camille Jordan, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, and, Simion Stoilow Institute of Mathematics of the Romanian Academy, Calea Griviţei 21, 010702 Bucureşti, România
2 Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du Cyclotron 2 bte L7.01.01, 1348 Louvain-la-Neuve, Belgium
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_2_281_0,
     author = {Petru Mironescu and Jean Van Schaftingen},
     title = {Trace theory for {Sobolev} mappings into a manifold},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {281--299},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {2},
     year = {2021},
     doi = {10.5802/afst.1675},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1675/}
}
TY  - JOUR
AU  - Petru Mironescu
AU  - Jean Van Schaftingen
TI  - Trace theory for Sobolev mappings into a manifold
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 281
EP  - 299
VL  - 30
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1675/
DO  - 10.5802/afst.1675
LA  - en
ID  - AFST_2021_6_30_2_281_0
ER  - 
%0 Journal Article
%A Petru Mironescu
%A Jean Van Schaftingen
%T Trace theory for Sobolev mappings into a manifold
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 281-299
%V 30
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1675/
%R 10.5802/afst.1675
%G en
%F AFST_2021_6_30_2_281_0
Petru Mironescu; Jean Van Schaftingen. Trace theory for Sobolev mappings into a manifold. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 281-299. doi : 10.5802/afst.1675. https://afst.centre-mersenne.org/articles/10.5802/afst.1675/

[1] Robert A. Adams; John J. F. Fournier Sobolev spaces, Pure and Applied Mathematics, 140, Academic Press Inc., 2003, xiv+305 pages | Zbl

[2] Fabrice Bethuel A characterization of maps in H 1 (𝔹 3 ,𝕊 2 ) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 4, pp. 269-286 | DOI | Numdam | MR

[3] Fabrice Bethuel The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991) no. 3-4, pp. 153-206 | DOI | MR | Zbl

[4] Fabrice Bethuel A new obstruction to the extension problem for Sobolev maps between manifolds, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 155-183 | DOI | MR | Zbl

[5] Fabrice Bethuel; David Chiron Perspectives in nonlinear partial differential equations, Perspectives in nonlinear partial differential equations (Contemporary Mathematics), Volume 446, American Mathematical Society, 2007, pp. 125-152 | DOI | MR | Zbl

[6] Fabrice Bethuel; Jean-Michel Coron; Françoise Demengel; Frédéric Hélein A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds, Nematics. Mathematical and physical aspects (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 332, Kluwer Academic Publishers, 1991, pp. 15-23 | MR | Zbl

[7] Fabrice Bethuel; Françoise Demengel Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 4, pp. 475-491 | DOI | MR | Zbl

[8] Jean Bourgain; Haïm Brezis; Petru Mironescu Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86 | DOI | MR | Zbl

[9] Jean Bourgain; Haïm Brezis; Petru Mironescu H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math., Inst. Hautes Étud. Sci. (2004) no. 99, pp. 1-115 | DOI | Numdam | MR | Zbl

[10] Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen Strong approximation of fractional Sobolev maps, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 133-153 | DOI | MR | Zbl

[11] Haïm Brezis; Petru Mironescu Sobolev maps to the circle (in preparation) | Zbl

[12] Haïm Brezis; Petru Mironescu Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001) no. 4, pp. 387-404 | DOI | MR | Zbl

[13] Haïm Brezis; Petru Mironescu Density in W s,p (Ω;𝒩), J. Funct. Anal., Volume 269 (2015) no. 7, pp. 2045-2109 | DOI | Zbl

[14] Haïm Brezis; Louis Nirenberg Degree theory and BMO, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | Zbl

[15] Emmanuele DiBenedetto Real analysis, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser; Springer, 2016, xxxii+596 pages | DOI | Zbl

[16] Emilio Gagliardo Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. Padova, Volume 27 (1957), pp. 284-305 | Numdam | MR | Zbl

[17] Robert Hardt; Fang-Hua Lin Mappings minimizing the L p norm of the gradient, Commun. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 555-588 | DOI | MR | Zbl

[18] Allen Hatcher Algebraic topology, Cambridge University Press, 2002, xii+544 pages | Zbl

[19] Takeshi Isobe Obstructions to the extension problem of Sobolev mappings, Topol. Methods Nonlinear Anal., Volume 21 (2003) no. 2, pp. 345-368 | DOI | MR | Zbl

[20] Jacques-Louis Lions; Jaak Peetre Sur une classe d’espaces d’interpolation, Publ. Math., Inst. Hautes Étud. Sci. (1964) no. 19, pp. 5-68 | DOI | Numdam | MR | Zbl

[21] Vladimir Mazʼya Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, 2011, xxviii+866 pages | DOI | MR

[22] Vladimir Mazʼya; Tatyana Shaposhnikova On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms, J. Math. Pures Appl., Volume 81 (2002) no. 9, pp. 877-884 | DOI | MR | Zbl

[23] Petru Mironescu; Emmanuel Russ Traces of weighted Sobolev spaces. Old and new, Nonlinear Anal., Theory Methods Appl., Volume 119 (2015), pp. 354-381 | DOI | MR | Zbl

[24] Petru Mironescu; Jean Van Schaftingen Lifting of fractional Sobolev maps to compact covering spaces (https://arxiv.org/abs/1907.01373, to appear in Anal. PDE)

[25] Antonin Monteil; Jean Van Schaftingen Uniform boundedness principles for Sobolev maps into manifolds, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 2, pp. 417-449 | DOI | MR | Zbl

[26] John Nash The imbedding problem for Riemannian manifolds, Ann. Math., Volume 63 (1956), pp. 20-63 | DOI | MR | Zbl

[27] Jaak Peetre A counter-example connected with Gagliardo’s trace theorem, Commentat. Math., Volume 2 (1979), pp. 277-282 | Zbl

[28] Tristan Rivière Dense subsets of H 1/2 (𝕊 2 ,𝕊 1 ), Ann. Global Anal. Geom., Volume 18 (2000) no. 5, pp. 517-528 | DOI | MR | Zbl

[29] Thomas Runst Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math., Volume 12 (1986) no. 4, pp. 313-346 | DOI | MR | Zbl

[30] Richard Schoen; Karen Uhlenbeck A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982) no. 2, pp. 307-335 | MR | Zbl

[31] Richard Schoen; Karen Uhlenbeck Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 253-268 | MR | Zbl

[32] S. V. Uspenskiĭ Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova, Volume 60 (1961), pp. 282-303 translation in Trans. Am. Math. Soc. 87 (1970), p. 121-145 | MR

[33] Brian White Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math., Volume 160 (1988) no. 1-2, pp. 1-17 | DOI | MR | Zbl

Cited by Sources: