During the last decade Optimal Transport had a relevant role in the study of geometry of singular spaces that culminated with the Lott–Sturm–Villani theory. The latter is built on the characterisation of Ricci curvature lower bounds in terms of displacement convexity of certain entropy functionals along -geodesics. Substantial recent advancements in the theory (localization paradigm and local-to-global property) have been obtained considering the different point of view of -Optimal transport problems yielding a different curvature dimension [5] formulated in terms of one-dimensional curvature properties of integral curves of Lipschitz maps. In this note we show that the two approaches produce the same curvature-dimension condition reconciling the two definitions. In particular we show that the condition can be formulated in terms of displacement convexity along -geodesics.
Pendant la dernière décennie le Transport Optimal a eu un rôle remarquable dans l’étude de la géométrie des espaces singulièrs qui a culminé dans la théorie de Lott–Sturm–Villani. Cette dernière repose sur la caractèrisation des bornes inférieures de la courbure de Ricci en termes de convexité de déplacement de la fonctionnelle entropie le long des -géodésiques. Récentes avancées dans la théorie (technique de localisation et local-au-global propriété) ont été obtenus en envisageant le différent point de vue du Transport Optimal, en entraînant à la differénte condition de courbure-dimension [5]. Cette dernière est formulée en termes des propriétés -dimensionnelles de la courbure des courbes integralés associées aux fonctions lipschitziennes. Dans la présente note on prouve que les deux approches produisent la même condition de courbure-dimension, en conciliant les deux définitions. En particulier, on prouve que la condition peut être formulée en termes de convexité de déplacement le long des -géodésiques.
Fabio Cavalletti 1; Nicola Gigli 1; Flavia Santarcangelo 1
@article{AFST_2021_6_30_2_411_0, author = {Fabio Cavalletti and Nicola Gigli and Flavia Santarcangelo}, title = {Displacement convexity of {Entropy} and the distance cost {Optimal} {Transportation}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {411--427}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {2}, year = {2021}, doi = {10.5802/afst.1679}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1679/} }
TY - JOUR AU - Fabio Cavalletti AU - Nicola Gigli AU - Flavia Santarcangelo TI - Displacement convexity of Entropy and the distance cost Optimal Transportation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 411 EP - 427 VL - 30 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1679/ DO - 10.5802/afst.1679 LA - en ID - AFST_2021_6_30_2_411_0 ER -
%0 Journal Article %A Fabio Cavalletti %A Nicola Gigli %A Flavia Santarcangelo %T Displacement convexity of Entropy and the distance cost Optimal Transportation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 411-427 %V 30 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1679/ %R 10.5802/afst.1679 %G en %F AFST_2021_6_30_2_411_0
Fabio Cavalletti; Nicola Gigli; Flavia Santarcangelo. Displacement convexity of Entropy and the distance cost Optimal Transportation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume spécial à l’occasion du semestre thématique “Calculus of Variations and Probability”, Volume 30 (2021) no. 2, pp. 411-427. doi : 10.5802/afst.1679. https://afst.centre-mersenne.org/articles/10.5802/afst.1679/
[1] Independence of synthetic Curvature Dimension conditions on transport distance exponent (to appear in Trans. Amer. Math. Soc.) | DOI
[2] On the extremality, uniqueness and optimality of transference plans, Bull. Inst. Math., Acad. Sin., Volume 4 (2009) no. 4, pp. 353-454 | MR | Zbl
[3] The Monge problem for distance cost in geodesic spaces, Commun. Math. Phys., Volume 318 (2013) no. 3, pp. 615-673 | DOI | MR
[4] Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal., Theory Methods Appl., Volume 99 (2014), pp. 136-151 | DOI | MR | Zbl
[5] The Globalization Theorem for the Curvature Dimension Condition (2016) (https://arxiv.org/abs/1612.07623, to appear in Invent. Math.)
[6] Optimal maps in essentially non-branching spaces, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1750007, 27 pages | MR | Zbl
[7] Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., Volume 208 (2017) no. 3, pp. 803-849 | DOI | MR | Zbl
[8] New formulas for the Laplacian of distance functions and applications, Ann. PDE, Volume 13 (2018) no. 7, pp. 2091-2147 | DOI | MR | Zbl
[9] Needle decompositions in Riemannian geometry, Memoirs of the American Mathematical Society, 1180, American Mathematical Society, 2017 | Zbl
[10] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[11] On the measure contraction property of metric measure spaces, Comment. Math. Helv., Volume 82 (2007) no. 4, pp. 805-828 | DOI | MR | Zbl
[12] Interpolated measures with bounded densities in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., Volume 263 (2012) no. 4, pp. 896-924 | DOI | Zbl
[13] Non-branching geodesics and optimal maps in strong -spaces, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3-4, pp. 831-846 | DOI | MR | Zbl
[14] A course on Borel sets, Graduate Texts in Mathematics, 180, Springer, 1998 | MR | Zbl
[15] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | Zbl
[16] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
Cited by Sources: