On equivalence of singularities of second order linear differential equations by point transformations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 527-560.

The article provides a local classification of singularities of meromorphic second order linear ordinary differential equations with respect to analytic/meromorphic linear point transformations, that is, transformations of both the unknown function and of the independent variable. In particular, it is shown that under a non-degeneracy condition two linear differential equations are analytically equivalent if and only if the associated companion systems are analytically equivalent as systems. Also the Lie algebras of analytic linear infinitesimal symmetries of the singularities are determined.

L’article propose une classification locale des singularités des équations différentielles linéaires du second ordre aux coefficients méromorphes par rapport aux transformations ponctuelles analytiques/méromorphes, c’est-à-dire, les transformations de la fonction inconnue aussi que de la variable indépendante. En particulier, il est montré que sous une condition de non-dégénérescence deux équations différentielles linéaires sont analytiquement équivalentes si et seulement si les systèmes compagnons associés sont analytiquement équivalents comme systèmes. Aussi les algèbres de Lie des symétries linéaires analytiques infinitésimales des singularités sont déterminées.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1684
Keywords: Linear ordinary differential equations, local analytic classification, normal forms, regular singularity, irregular singularity, Stokes phenomenon, analytic Lie symmetries
Keywords: Équations différentielles ordinaires linéaires, classification analytique locale, formes normalles, une singularité régulière, une singularité irrégulière, phénomène de Stokes, symétries de Lie analytiques

Martin Klimeš 1

1 University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_3_527_0,
     author = {Martin Klime\v{s}},
     title = {On equivalence of singularities of second order linear differential equations by point transformations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {527--560},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {3},
     year = {2021},
     doi = {10.5802/afst.1684},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1684/}
}
TY  - JOUR
AU  - Martin Klimeš
TI  - On equivalence of singularities of second order linear differential equations by point transformations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 527
EP  - 560
VL  - 30
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1684/
DO  - 10.5802/afst.1684
LA  - en
ID  - AFST_2021_6_30_3_527_0
ER  - 
%0 Journal Article
%A Martin Klimeš
%T On equivalence of singularities of second order linear differential equations by point transformations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 527-560
%V 30
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1684/
%R 10.5802/afst.1684
%G en
%F AFST_2021_6_30_3_527_0
Martin Klimeš. On equivalence of singularities of second order linear differential equations by point transformations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 527-560. doi : 10.5802/afst.1684. https://afst.centre-mersenne.org/articles/10.5802/afst.1684/

[1] Donald G. Babbitt; Veeravalli S. Varadarajan Local moduli for meromorphic differential equations, Astérisque, 169-170, Société Mathématique de France, 1989 | Numdam | Zbl

[2] Werner Balser Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer, 2000 | Zbl

[3] Werner Balser; Wolfgang B. Jurkat; Donald A. Lutz A general theory of invariants for meromorphic differential equations. I: Formal invariants, II: Proper invariants, Funkc. Ekvacioj, Ser. Int., Volume 22 (1979), p. 197-221 and 257–283 | Zbl

[4] George D. Birkhoff The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Am. Acad., Volume 49 (1913), pp. 521-568 | DOI | Zbl

[5] David Blázquez-Sanz; Juan J. Morales-Ruiz; Jacques-Arthur Weil Differential Galois theory and Lie symmetries, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 092, 17 pages | MR | Zbl

[6] Peter De Maesschalck Geometry and Gevrey asymptotics of two-dimensional turning points, Ph. D. Thesis, Hasselt University (Belgium) (2003)

[7] Leonard E. Dickson Differential equations from the group standpoint, Ann. Math., Volume 25 (1924), pp. 287-378 | DOI | MR

[8] Newton S. Hawley; Menahem Schiffer Half-order differentials on Riemann surfaces, Acta Math., Volume 115 (1966), pp. 199-236 | DOI | MR | Zbl

[9] Yulij Ilyashenko; Sergei Yakovenko Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, American Mathematical Society, 2008 | MR | Zbl

[10] Ilya Kossovskiy; Rasul Shafikov Divergent CR-equivalences and meromorphic differential equations, J. Eur. Math. Soc., Volume 18 (2016) no. 12, pp. 2785-2819 | DOI | MR | Zbl

[11] Ernst Kummer De generali quadam equatione differentiali tertii ordinis, J. Reine Angew. Math., Volume 100 (1887), pp. 1-9 (first published in 1834) | Zbl

[12] Edmond N. Laguerre Sur quelques invariants des équations différentielles linéaires, C. R. Acad. Sci. Paris, Volume 88 (1879), pp. 424-427

[13] Michèle Loday-Richaud Divergent Series, Summability and Resurgence II: Simple and Multiple Summability, Lecture Notes in Mathematics, 2154, Springer, 2016 | MR | Zbl

[14] Hideyuki Majima Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics, 1075, Springer, 1984 | MR | Zbl

[15] Bernard Malgrange Remarques sur les équations différentielles à points singuliers irréguliers, Équations différentielles et systèmes de Pfaff dans le champ complexe (Lecture Notes in Mathematics), Volume 712, Springer, 1979, pp. 77-86 | DOI | Zbl

[16] Bernard Malgrange Travaux d’Ecalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki, vol. 1981/82 (Astérisque), Volume 92-93, Société Mathématique de France, 1982, pp. 59-73 | Numdam | Zbl

[17] Bernard Malgrange Sommation des séries divergentes, Expo. Math., Volume 13 (1995) no. 2-3, pp. 163-222 | Zbl

[18] Jean Martinet; Jean-Pierre Ramis Problémes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math., Inst. Hautes Étud. Sci., Volume 55 (1982), pp. 63-164 | DOI | Numdam | Zbl

[19] Jorge Mozo-Fernández Weierstrass theorems in strong asymptotic analysis, Bull. Pol. Acad. Sci., Math., Volume 49 (2001) no. 3, pp. 255-268 | MR | Zbl

[20] W. R. Oudshoorn; Marius van der Put Lie symmetries and differential galois groups of linear equations, Math. Comput., Volume 71 (2002) no. 237, pp. 349-361 | DOI | MR | Zbl

[21] Marius van der Put; Michael F. Singer Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer, 2003 | MR | Zbl

[22] Yasutaka Sibuya Linear differential equations in the complex domain : problems of analytic continuation, Translations of Mathematical Monographs, 82, American Mathematical Society, 1990 | MR | Zbl

[23] Paul Stäckel Ueber Transformationen von Differentialgleichungen, J. Reine Angew. Math., Volume 111 (1893), pp. 290-302 | MR | Zbl

[24] Kurt Strebel Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 5, Springer, 1984 | MR | Zbl

[25] Shira Tanny; Sergei Yakovenko On local Weyl equivalence of higher order Fuchsian equations, Arnold Math. J., Volume 1 (2015) no. 2, pp. 141-170 | DOI | MR | Zbl

[26] Jean-Claude Tougeron Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 2, pp. 173-208 | DOI | Numdam | MR

Cited by Sources: