A right inverse of Cauchy–Riemann operator ¯ k +a in the weighted Hilbert space L 2 (,e -|z| 2 )
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 619-632.

Using Hörmander L 2 method for Cauchy–Riemann equations from complex analysis, we study a simple differential operator ¯ k +a of any order (densely defined and closed) in the weighted Hilbert space L 2 (,e -|z| 2 ) and prove the existence of a right inverse that is bounded.

Nous utilisons la méthode des estimées L 2 de Hörmander pour les équations de Cauchy–Riemann pour étudier un opérateur différentiel simple ¯ k +a de tout ordre (fermé et densément défini) dans l’espace de Hilbert à poids L 2 (,e -|z| 2 ). Nous montrons l’existence d’un inverse à droite qui est borné.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1686

Shaoyu Dai 1; Yifei Pan 2

1 Department of Mathematics, Jinling Institute of Technology, Nanjing 211169, China
2 Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne 46805-1499, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_3_619_0,
     author = {Shaoyu Dai and Yifei Pan},
     title = {A right inverse of {Cauchy{\textendash}Riemann} operator $\protect \bar{\partial }^k+a$ in the weighted {Hilbert} space $L^2(\protect \mathbb{C},e^{-|z|^2})$},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {619--632},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {3},
     year = {2021},
     doi = {10.5802/afst.1686},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1686/}
}
TY  - JOUR
AU  - Shaoyu Dai
AU  - Yifei Pan
TI  - A right inverse of Cauchy–Riemann operator $\protect \bar{\partial }^k+a$ in the weighted Hilbert space $L^2(\protect \mathbb{C},e^{-|z|^2})$
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 619
EP  - 632
VL  - 30
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1686/
DO  - 10.5802/afst.1686
LA  - en
ID  - AFST_2021_6_30_3_619_0
ER  - 
%0 Journal Article
%A Shaoyu Dai
%A Yifei Pan
%T A right inverse of Cauchy–Riemann operator $\protect \bar{\partial }^k+a$ in the weighted Hilbert space $L^2(\protect \mathbb{C},e^{-|z|^2})$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 619-632
%V 30
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1686/
%R 10.5802/afst.1686
%G en
%F AFST_2021_6_30_3_619_0
Shaoyu Dai; Yifei Pan. A right inverse of Cauchy–Riemann operator $\protect \bar{\partial }^k+a$ in the weighted Hilbert space $L^2(\protect \mathbb{C},e^{-|z|^2})$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 619-632. doi : 10.5802/afst.1686. https://afst.centre-mersenne.org/articles/10.5802/afst.1686/

[1] Haakan Hedenmalm On Hörmander’s solution of the ¯-equation. I, Math. Z., Volume 281 (2015) no. 1-2, pp. 349-355 | DOI | MR | Zbl

[2] Lars Hörmander L 2 estimates and existence theorems for the ¯ operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl

[3] Lars Hörmander An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland, 1990, 92 pages | MR | Zbl

[4] Lars Hörmander Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994, 257 pages | MR | Zbl

[5] Warren P. Johnson The curious history of Faà di Bruno’s formula, Am. Math. Mon., Volume 109 (2002) no. 3, pp. 217-234 | MR | Zbl

Cited by Sources: