Using Hörmander method for Cauchy–Riemann equations from complex analysis, we study a simple differential operator of any order (densely defined and closed) in the weighted Hilbert space and prove the existence of a right inverse that is bounded.
Nous utilisons la méthode des estimées de Hörmander pour les équations de Cauchy–Riemann pour étudier un opérateur différentiel simple de tout ordre (fermé et densément défini) dans l’espace de Hilbert à poids . Nous montrons l’existence d’un inverse à droite qui est borné.
Accepted:
Published online:
Shaoyu Dai 1; Yifei Pan 2
@article{AFST_2021_6_30_3_619_0, author = {Shaoyu Dai and Yifei Pan}, title = {A right inverse of {Cauchy{\textendash}Riemann} operator $\protect \bar{\partial }^k+a$ in the weighted {Hilbert} space $L^2(\protect \mathbb{C},e^{-|z|^2})$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {619--632}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {3}, year = {2021}, doi = {10.5802/afst.1686}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1686/} }
TY - JOUR AU - Shaoyu Dai AU - Yifei Pan TI - A right inverse of Cauchy–Riemann operator $\protect \bar{\partial }^k+a$ in the weighted Hilbert space $L^2(\protect \mathbb{C},e^{-|z|^2})$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 619 EP - 632 VL - 30 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1686/ DO - 10.5802/afst.1686 LA - en ID - AFST_2021_6_30_3_619_0 ER -
%0 Journal Article %A Shaoyu Dai %A Yifei Pan %T A right inverse of Cauchy–Riemann operator $\protect \bar{\partial }^k+a$ in the weighted Hilbert space $L^2(\protect \mathbb{C},e^{-|z|^2})$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 619-632 %V 30 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1686/ %R 10.5802/afst.1686 %G en %F AFST_2021_6_30_3_619_0
Shaoyu Dai; Yifei Pan. A right inverse of Cauchy–Riemann operator $\protect \bar{\partial }^k+a$ in the weighted Hilbert space $L^2(\protect \mathbb{C},e^{-|z|^2})$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 619-632. doi : 10.5802/afst.1686. https://afst.centre-mersenne.org/articles/10.5802/afst.1686/
[1] On Hörmander’s solution of the -equation. I, Math. Z., Volume 281 (2015) no. 1-2, pp. 349-355 | DOI | MR | Zbl
[2] estimates and existence theorems for the operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[3] An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland, 1990, 92 pages | MR | Zbl
[4] Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994, 257 pages | MR | Zbl
[5] The curious history of Faà di Bruno’s formula, Am. Math. Mon., Volume 109 (2002) no. 3, pp. 217-234 | MR | Zbl
Cited by Sources: