We study the full Ginzburg–Landau energy with a periodic rapidly oscillating, discontinuous and (strongly) diluted pinning term using a perturbative argument. This energy models the state of an heterogeneous type II superconductor submitted to a magnetic field. We calculate the value of the first critical field which links the presence of vorticity defects with the intensity of the applied magnetic field. Then we prove a standard dependence of the quantized vorticity defects with the intensity of the applied field. Our study includes the case of a London solution having several minima. The pinning effect is explicitly established and we give the asymptotic location of the vorticity defects with various scales. The macroscopic location of the vorticity defects is understood with the famous Bethuel–Brézis–Hélein renormalized energy restricted to the minima of the London solution coupled with a renormalized energy obtained by Sandier–Serfaty. The mesoscopic location, i.e., the arrangement of the vorticity defects around the minima of the London solution, is described, as in the homogenous case, by a renormalized energy obtained by Sandier–Serfaty. The microscopic location is exactly the same than in the heterogeneous case without magnetic field. We also compute the value of secondary critical fields that increment the quantized vorticity.
À l’aide d’un argument perturbatif, on étudie une énergie de type Ginzburg–Landau bidimensionnelle avec un champ magnétique et présentant un terme de chevillage périodique rapidement oscillant, discontinu et (fortement) dilué. Cette énergie modélise l’état d’un supraconducteur hétérogène de type II soumis à un champ magnétique. On calcule la valeur du premier champ critique à partir duquel les défauts de vorticité apparaissent. Ensuite on démontre une dépendance classique reliant les défauts de vorticité quantifiés avec l’intensité du champ appliqué. Notre étude traite aussi le cas où la solution de London admet plusieurs point de minimum. L’effet d’ancrage des défauts de vorticité est clairement établi et on précise suivant différentes échelles l’emplacement asymptotique des défauts de vorticité. La position macroscopique des défauts de vorticité est donnée par la célèbre énergie renormalisée de Bethuel–Brézis–Hélein restreinte au points de minimum de la solution de London couplée avec une énergie renormalisée obtenue par Sandier–Serfaty. La position mesoscopique, i.e., l’arrangement des défauts de vorticité autour des points de minimum de la solution de London, est décrite, comme dans le cas homogène, par une énergie renormalisée obtenue par Sandier–Serfaty. La position microscopique est exactement la même que dans le cas sans champ magnétique. On calcule aussi des champs critiques secondaires qui incrémentent la vorticité quantifiée.
Accepted:
Published online:
Keywords: Superconductivity, Ginzburg–Landau, pinning
Mickaël Dos Santos 1
@article{AFST_2021_6_30_4_705_0, author = {Micka\"el Dos Santos}, title = {Magnetic {Ginzburg{\textendash}Landau} energy with a periodic rapidly oscillating and diluted pinning term}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {705--799}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {4}, year = {2021}, doi = {10.5802/afst.1688}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1688/} }
TY - JOUR AU - Mickaël Dos Santos TI - Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 705 EP - 799 VL - 30 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1688/ DO - 10.5802/afst.1688 LA - en ID - AFST_2021_6_30_4_705_0 ER -
%0 Journal Article %A Mickaël Dos Santos %T Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 705-799 %V 30 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1688/ %R 10.5802/afst.1688 %G en %F AFST_2021_6_30_4_705_0
Mickaël Dos Santos. Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 4, pp. 705-799. doi : 10.5802/afst.1688. https://afst.centre-mersenne.org/articles/10.5802/afst.1688/
[1] Pinning phenomena in the Ginzburg–Landau model of superconductivity, J. Math. Pures Appl., Volume 80 (2001) no. 3, pp. 339-372 | DOI | MR | Zbl
[2] Topological methods for the Ginzburg–Landau equations, J. Math. Pures Appl., Volume 77 (1998) no. 1, pp. 1-49 | DOI | MR | Zbl
[3] Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 1 (1993) no. 2, pp. 123-148 | DOI | MR | Zbl
[4] Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser, 1994 | DOI
[5] On the Morse–Sard property and level sets of Sobolev and BV functions, Rev. Mat. Iberoam., Volume 1 (2013) no. 29, pp. 1-23 | DOI | MR | Zbl
[6] The Ginzburg–Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case, Indiana Univ. Math. J., Volume 62 (2013) no. 2, pp. 551-641 | DOI | MR | Zbl
[7] Microscopic renormalized energy for a pinned Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 53 (2015) no. 1-2, pp. 65-89 | DOI | MR | Zbl
[8] Explicit expression of the microscopic renormalized energy for a pinned Ginzburg–Landau functional (2018) (https://hal.archives-ouvertes.fr/hal-01684216v2)
[9] Ginzburg–Landau model with small pinning domains, Netw. Heterog. Media, Volume 6 (2011) no. 4, pp. 715-753 | DOI | MR | Zbl
[10] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2015
[11] Magnetic vortices for a Ginzburg–Landau type energy with discontinuous constraint, ESAIM, Control Optim. Calc. Var., Volume 16 (2009) no. 3, pp. 545-580 | DOI | MR
[12] Ginzburg–Landau type energy with discontinuous constraint, J. Anal. Math., Volume 77 (1999), pp. 1-26 | DOI | MR | Zbl
[13] Minimization problems and corresponding renormalized energies, Differ. Integral Equ., Volume 9 (1996) no. 5, pp. 903-917 | MR | Zbl
[14] On the equilibrium position of Ginzburg–Landau vortices, Z. Angew. Math. Phys., Volume 46 (1995) no. 5, pp. 739-751 | DOI | MR | Zbl
[15] Ginzburg–Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 1, pp. 17-28 | DOI | MR
[16] Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2007 | DOI
[17] Local minimizers for the Ginzburg–Landau energy near critical magnetic field: Part I, Commun. Contemp. Math., Volume 1 (1999) no. 2, pp. 213-254 | DOI | MR | Zbl
Cited by Sources: