Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 4, pp. 705-799.

We study the 2D full Ginzburg–Landau energy with a periodic rapidly oscillating, discontinuous and (strongly) diluted pinning term using a perturbative argument. This energy models the state of an heterogeneous type II superconductor submitted to a magnetic field. We calculate the value of the first critical field which links the presence of vorticity defects with the intensity of the applied magnetic field. Then we prove a standard dependence of the quantized vorticity defects with the intensity of the applied field. Our study includes the case of a London solution having several minima. The pinning effect is explicitly established and we give the asymptotic location of the vorticity defects with various scales. The macroscopic location of the vorticity defects is understood with the famous Bethuel–Brézis–Hélein renormalized energy restricted to the minima of the London solution coupled with a renormalized energy obtained by Sandier–Serfaty. The mesoscopic location, i.e., the arrangement of the vorticity defects around the minima of the London solution, is described, as in the homogenous case, by a renormalized energy obtained by Sandier–Serfaty. The microscopic location is exactly the same than in the heterogeneous case without magnetic field. We also compute the value of secondary critical fields that increment the quantized vorticity.

À l’aide d’un argument perturbatif, on étudie une énergie de type Ginzburg–Landau bidimensionnelle avec un champ magnétique et présentant un terme de chevillage périodique rapidement oscillant, discontinu et (fortement) dilué. Cette énergie modélise l’état d’un supraconducteur hétérogène de type II soumis à un champ magnétique. On calcule la valeur du premier champ critique à partir duquel les défauts de vorticité apparaissent. Ensuite on démontre une dépendance classique reliant les défauts de vorticité quantifiés avec l’intensité du champ appliqué. Notre étude traite aussi le cas où la solution de London admet plusieurs point de minimum. L’effet d’ancrage des défauts de vorticité est clairement établi et on précise suivant différentes échelles l’emplacement asymptotique des défauts de vorticité. La position macroscopique des défauts de vorticité est donnée par la célèbre énergie renormalisée de Bethuel–Brézis–Hélein restreinte au points de minimum de la solution de London couplée avec une énergie renormalisée obtenue par Sandier–Serfaty. La position mesoscopique, i.e., l’arrangement des défauts de vorticité autour des points de minimum de la solution de London, est décrite, comme dans le cas homogène, par une énergie renormalisée obtenue par Sandier–Serfaty. La position microscopique est exactement la même que dans le cas sans champ magnétique. On calcule aussi des champs critiques secondaires qui incrémentent la vorticité quantifiée.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1688
Classification: 35Q56, 35J20, 35B27
Keywords: Superconductivity, Ginzburg–Landau, pinning

Mickaël Dos Santos 1

1 Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, UMR CNRS 6620, Campus des Cézeaux, 63177 Aubière, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_4_705_0,
     author = {Micka\"el Dos Santos},
     title = {Magnetic {Ginzburg{\textendash}Landau} energy with a periodic rapidly oscillating and diluted pinning term},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {705--799},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {4},
     year = {2021},
     doi = {10.5802/afst.1688},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1688/}
}
TY  - JOUR
AU  - Mickaël Dos Santos
TI  - Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 705
EP  - 799
VL  - 30
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1688/
DO  - 10.5802/afst.1688
LA  - en
ID  - AFST_2021_6_30_4_705_0
ER  - 
%0 Journal Article
%A Mickaël Dos Santos
%T Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 705-799
%V 30
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1688/
%R 10.5802/afst.1688
%G en
%F AFST_2021_6_30_4_705_0
Mickaël Dos Santos. Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 4, pp. 705-799. doi : 10.5802/afst.1688. https://afst.centre-mersenne.org/articles/10.5802/afst.1688/

[1] Amandine Aftalion; Étienne Sandier; Sylvia Serfaty Pinning phenomena in the Ginzburg–Landau model of superconductivity, J. Math. Pures Appl., Volume 80 (2001) no. 3, pp. 339-372 | DOI | MR | Zbl

[2] Luís Almeida; Fabrice Bethuel Topological methods for the Ginzburg–Landau equations, J. Math. Pures Appl., Volume 77 (1998) no. 1, pp. 1-49 | DOI | MR | Zbl

[3] Fabrice Bethuel; Haïm Brézis; Frédéric Hélein Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 1 (1993) no. 2, pp. 123-148 | DOI | MR | Zbl

[4] Fabrice Bethuel; Haïm Brézis; Frédéric Hélein Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser, 1994 | DOI

[5] Jean Bourgain; Mikhail V. Korobkov; Jan Kristensen On the Morse–Sard property and level sets of Sobolev and BV functions, Rev. Mat. Iberoam., Volume 1 (2013) no. 29, pp. 1-23 | DOI | MR | Zbl

[6] Mickaël Dos Santos The Ginzburg–Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case, Indiana Univ. Math. J., Volume 62 (2013) no. 2, pp. 551-641 | DOI | MR | Zbl

[7] Mickaël Dos Santos Microscopic renormalized energy for a pinned Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 53 (2015) no. 1-2, pp. 65-89 | DOI | MR | Zbl

[8] Mickaël Dos Santos Explicit expression of the microscopic renormalized energy for a pinned Ginzburg–Landau functional (2018) (https://hal.archives-ouvertes.fr/hal-01684216v2)

[9] Mickaël Dos Santos; Oleksandr Misiats Ginzburg–Landau model with small pinning domains, Netw. Heterog. Media, Volume 6 (2011) no. 4, pp. 715-753 | DOI | MR | Zbl

[10] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2015

[11] Ayman Kachmar Magnetic vortices for a Ginzburg–Landau type energy with discontinuous constraint, ESAIM, Control Optim. Calc. Var., Volume 16 (2009) no. 3, pp. 545-580 | DOI | MR

[12] Lofti Lassoued; Petru Mironescu Ginzburg–Landau type energy with discontinuous constraint, J. Anal. Math., Volume 77 (1999), pp. 1-26 | DOI | MR | Zbl

[13] Cătălin Lefter; Vicenţiu Rădulescu Minimization problems and corresponding renormalized energies, Differ. Integral Equ., Volume 9 (1996) no. 5, pp. 903-917 | MR | Zbl

[14] J. Rubinstein On the equilibrium position of Ginzburg–Landau vortices, Z. Angew. Math. Phys., Volume 46 (1995) no. 5, pp. 739-751 | DOI | MR | Zbl

[15] Étienne Sandier; Sylvia Serfaty Ginzburg–Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 1, pp. 17-28 | DOI | MR

[16] Étienne Sandier; Sylvia Serfaty Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2007 | DOI

[17] Sylvia Serfaty Local minimizers for the Ginzburg–Landau energy near critical magnetic field: Part I, Commun. Contemp. Math., Volume 1 (1999) no. 2, pp. 213-254 | DOI | MR | Zbl

Cited by Sources: