By applying the positivity theorem of direct images and a pluricanonical version of the structure theorem on the cohomology jumping loci à la Green–Lazarsfeld–Simpson, we show that the klt Kähler version of the Iitaka conjecture (Ueno, 1975) for (surjective morphism between compact Kähler manifolds with connected general fibre) holds true when the determinant of the direct image of some power of the relative canonical bundle is big on or when is a complex torus. These generalize the corresponding results of Viehweg (1983) and of Cao-Păun (2017) respectively. We further generalize the later case to the geometric orbifold setting, i.e. prove that (Campana, 2004) holds when is a complex torus.
En appliquant la positivité des images directes et une version pluricanonique du théorème de structure des lieux de saut cohomologique à la Green–Lazarsfeld–Simpson, nous démontrons que la version klt kählérienne de la conjecture d’Iitaka (Ueno, 1975) pour (morphisme surjectif entre variétés kählériennes compactes à fibre générale connexe) est vraie si le déterminant de l’image directe d’une certaine puissance du fibré canonique relative est gros sur ou si est un tore complexe. Ceci généralisent les résultats correspondants de Viehweg (1983) et de Cao-Păun (2017) respectivement. De plus nous généralisons le deuxième résultat ci-dessus au cadre des orbifoldes géométriques, c-à-d., nous démontrons que (Campana, 2004) est vraie quand est un tore complexe.
Accepted:
Published online:
Juanyong Wang 1
@article{AFST_2021_6_30_4_813_0, author = {Juanyong Wang}, title = {On the {Iitaka} {Conjecture~}$C_{n,m}$ for {K\"ahler} {Fibre} {Spaces}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {813--897}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {4}, year = {2021}, doi = {10.5802/afst.1690}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1690/} }
TY - JOUR AU - Juanyong Wang TI - On the Iitaka Conjecture $C_{n,m}$ for Kähler Fibre Spaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 813 EP - 897 VL - 30 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1690/ DO - 10.5802/afst.1690 LA - en ID - AFST_2021_6_30_4_813_0 ER -
%0 Journal Article %A Juanyong Wang %T On the Iitaka Conjecture $C_{n,m}$ for Kähler Fibre Spaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 813-897 %V 30 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1690/ %R 10.5802/afst.1690 %G en %F AFST_2021_6_30_4_813_0
Juanyong Wang. On the Iitaka Conjecture $C_{n,m}$ for Kähler Fibre Spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 4, pp. 813-897. doi : 10.5802/afst.1690. https://afst.centre-mersenne.org/articles/10.5802/afst.1690/
[1] Néron Models, Arithmetic Geometry (1986), pp. 213-230 | DOI | Zbl
[2] Algebraic Methods in the Global Theory of Complex Spaces, John Wiley & Sons, 1976 (revised English version of Metode algebrice în teoria globală a spaţiilor complexe, Etitura academiei, Bucureşti, 1974)
[3] Curvature of Vector Bundles Associated to Holomorphic Fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl
[4] The Openness Conjecture for Plurisubharmonic Functions (2013) (https://arxiv.org/abs/1305.5781)
[5] Bergman Kernels and the Pseudoeffectivity of Relative Canonical Bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | MR | Zbl
[6] Bergman Kernels and the Subadjunction (2010) (https://arxiv.org/abs/1002.4145)
[7] Complex Abelian Varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004 | DOI
[8] Suita Conjecture and the Ohsawa-Takegoshi Extension Theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[9] Divisorial Zariski Decomposition on Compact Complex Manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 4, pp. 45-67 | DOI | MR | Zbl
[10] Singularities of Plurisubharmonic Functions and Multiplier Ideals, 2016 (Notes of Course, http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf)
[11] The Pseudo-effective Cone of a Compact Kähler Manifold and Varieties of Negative Kodaira Dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[12] The Volume of an Isolated Singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1520 | MR | Zbl
[13] Tropical and non-Archimedean Limits of Degenerating Families of Volume Forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl
[14] Unitary Local Systems, Multiplier Ideals, and Polynomial Periodicity of Hodge Numbers, Adv. Math., Volume 221 (2009) no. 1, pp. 217-250 | DOI | MR | Zbl
[15] Cohomology Jump Loci of Quasi-projective Varieties, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 1, pp. 227-236 | DOI | MR | Zbl
[16] Cohomology Jump Loci of Quasi-compact Kähler Manifolds (2017) (https://arxiv.org/abs/1702.02186)
[17] Orbifolds, Special Varieties and Classification Theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-665 | DOI | Numdam | MR | Zbl
[18] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes (2009) (Prépublication IECN https://hal.archives-ouvertes.fr/hal-00356763)
[19] Abundance for Kähler Threefolds, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 4, pp. 971-1025 | DOI | Zbl
[20] Numerical Character of the Effectivity of Adjoint Line Bundles, Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 107-119 | DOI | Numdam | MR | Zbl
[21] Geometric Stability of the Cotangent Bundle and the Universal Cover of a Projective Manifold, Bull. Soc. Math. Fr., Volume 139 (2011) no. 1, pp. 41-74 | DOI | Numdam | MR | Zbl
[22] On the Approximation of Kähler Manifolds by Algebraic Varieties, Math. Ann., Volume 363 (2015) no. 1-2, pp. 393-422 | MR | Zbl
[23] Ohsawa-Takegoshi Extension Theorem for Compact Kähler Manifolds and Applications, Complex and Symplectic Geometry (Springer INdAM Series), Volume 21 (2017), pp. 19-38 | MR | Zbl
[24] A Decomposition Theorem for Projective Manifolds with Nef Anticanonical Bundle (2017) (to appear in J. Algebr. Geom., https://arxiv.org/abs/1706.08814)
[25] Kodaira Dimension of Algebraic Fibre Space over Abelian Varieties, Invent. Math., Volume 207 (2017) no. 1, pp. 345-387 | Zbl
[26] Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes, Herman, éditeur des sciences et des arts, 1961
[27] Tores et variétés abéliennes complexes, Contributions in Mathematical and Computational Sciences, 6, Société Mathématique de France; EDP Sciences, 1999
[28] Higher-Dimensional Algebraic Geometry, Universitext, Springer, 2001 | DOI
[29] Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, 1, Higher Education Press; International Press, 2010
[30] Complex Analytic and Differential Geometry, OpenContent Book https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012
[31] Extension of Holomorphic Functions Defined on non Reduced Analytic Subvarieties (2015) (https://arxiv.org/abs/1510.05230)
[32] A Subadditivity Property of Multiplier Ideals, Mich. Math. J., Volume 48 (2000) no. 1, pp. 137-156 | MR | Zbl
[33] New Characterizations of Plurisubharmonic Functions and Positivity of Direct Image Sheaves (2018) (https://arxiv.org/abs/1809.10371)
[34] Applications of the Ohsawa–Takegoshi Extension Theorem to Direct Image Problems (2017) (https://arxiv.org/abs/1703.07279)
[35] Classification des variétés de dimension et plus, Séminaire Bourbaki n°23 (1981) (Lecture Notes in Mathematics), Volume 901 (1981) (exposé 568) | DOI | Numdam | Zbl
[36] Notes on the Weak Positivity Theorem, Algebraic Varieties and Automorphism Groups, July 7-11, 2014 (Advances Studies in Pure Mathematics), Volume 75 (2017), pp. 73-118 | DOI | MR | Zbl
[37] On Kähler Fibre Spaces over Curves, J. Math. Soc. Japan, Volume 30 (1978) no. 4, pp. 779-794 | MR | Zbl
[38] Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1984 | DOI
[39] Plurisubharmonische Funktionen in komplexen Räumen, Math. Z., Volume 65 (1956), pp. 175-194 | DOI | Zbl
[40] Positivity of Vector Bundles and Hodge Theory (2018) (https://arxiv.org/abs/1803.07405)
[41] Deformation Theory, Generic Vanishing Theorems, and some Conjectures of Enriques, Cantanese and Beauville, Invent. Math., Volume 90 (1987) no. 2, pp. 389-407 | DOI | Zbl
[42] Higher Obstructions to Deforming Cohomology Groups of Line Bundles, J. Am. Math. Soc., Volume 4 (1991) no. 1, pp. 87-103 | DOI | MR | Zbl
[43] A Proof of Demailly’s Strong Openness Conjecture, Ann. Math., Volume 182 (2015) no. 2, pp. 605-616 | DOI | MR | Zbl
[44] A Solution of an Extension Problem with an Optimal Estimate and Applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl
[45] Algebraic Fibre Spaces over Abelian Varieties: Around a Recent Theorem by Cao and Păun, Local and Global Methods in Algebraic Geometry (Contemporary Mathematics), Volume 712 (2018), pp. 143-195 | Zbl
[46] Flattening Theorem in Complex Analytic Geometry, Am. J. Math., Volume 97 (1975) no. 2, pp. 503-547 | DOI | MR | Zbl
[47] Positivity of Direct Image Sheaves. A Geometric Point of View, Enseign. Math., Volume 56 (2010) no. 1-2, pp. 87-142 | DOI | MR | Zbl
[48] Minimal Models for Kähler Threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | Zbl
[49] Characterization of Abelian Varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276 | Numdam | MR | Zbl
[50] Kodaira Dimension of Algebraic Fibre Spaces over Curves, Invent. Math., Volume 66 (1982) no. 1, pp. 57-71 | DOI | Zbl
[51] Minimal Models and the Kodaira Dimension of Algebraic Fibre Spaces, J. Reine Angew. Math., Volume 1985 (1985) no. 363, pp. 1-46 | Zbl
[52] On the Abundance Theorem in the Case of Numerical Kodaira Dimension Zero, Am. J. Math., Volume 135 (2013) no. 1, pp. 115-124 | DOI | MR | Zbl
[53] Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10 (1987), pp. 283-360 | DOI | MR | Zbl
[54] On a Characterization of an Abelian Variety in the Classification Theory of Algebraic Varieties, Compos. Math., Volume 41 (1980) no. 3, pp. 355-359 | Numdam | MR | Zbl
[55] Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987 | DOI
[56] Singularities of Pairs, Algebraic Geometry Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62 (1997), pp. 221-287 | DOI | MR | Zbl
[57] Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI
[58] Toroidal Embeddings, Lecture Notes in Mathematics, 339, Springer, 1973
[59] Positivity in Algebraic Geometry I & II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48 & 49, Springer, 2004
[60] A Pathology of Asymptotic Multiplicity in the Relative Setting, Math. Res. Lett., Volume 23 (2016) no. 5, pp. 1433-1451 | DOI | MR | Zbl
[61] Commutative Algebra, Mathematics Lecture Note Series, W. A. Benjamin, Inc., 1970
[62] Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989
[63] Abelian Varieties, Arithmetic Geometry (1986), pp. 103-150 | DOI
[64] Zariski-decomposition and Abundance, MSJ Memoirs, Mathematical Society of Japan, 2004
[65] Singular Hermitian Metrics and Positivity of Direct Images of Pluricanonical Bundles, 2016 (Survey https://arxiv.org/abs/1606.00174) | Zbl
[66] Positivity of Twisted Relative Pluricanonical Bundles and Their Direct Images, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 211-272 | DOI | MR | Zbl
[67] Complexe dualisant et théorèmes de dualité en géométrie analytique complexe, Publ. Math., Inst. Hautes Étud. Sci., Volume 38 (1970), pp. 77-91 | DOI | Numdam | Zbl
[68] Singular Hermitian Metrics on Holomorphic Vector Bundles, Ark. Mat., Volume 53 (2015) no. 2, pp. 359-382 | DOI | MR | Zbl
[69] Flat Modules in Algebraic Geometry, Compos. Math., Volume 24 (1972) no. 1, pp. 11-31 | MR
[70] Subspaces of Moduli Spaces of Rank one Local Systems, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 3, pp. 361-401 | DOI | Numdam | MR | Zbl
[71] Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Mathematics, 439, Springer, 1975 | DOI
[72] Three Variations on a Theme in Complex Analytic Geometry, Analytic And Algebraic Geometry: Common Problems, Different Methods (IAS/Park City Mathematics Series), Volume 17 (2010), pp. 183-295 | DOI | MR | Zbl
[73] Rational Singularities of Higher Dimensional Schemes, Proc. Am. Math. Soc., Volume 63 (1977) no. 1, pp. 6-8 | DOI | MR | Zbl
[74] Weak Positivity and the Additivity of the Kodaira Dimension for Certain Fibre Spaces, Algebraic Varieties and Analytic Varieties (Advanced Studies in Pure Mathematics), Volume 1 (1983), pp. 329-353 | DOI | MR | Zbl
[75] Quasi-projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 30, Springer, 1995 | DOI
[76] Théorie de Hodge et géométrie algébrique complexe, Contributions in Mathematical and Computational Sciences, 10, Société Mathématique de France; EDP Sciences, 2002
[77] Torsion Points on the Cohomology Jump Loci of Compact Kähler Manifolds, Math. Res. Lett., Volume 23 (2016) no. 2, pp. 545-563 | DOI | Zbl
[78] An optimal L2 Extension Theorem on Weakly Pseudoconvex Kähler Manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | Zbl
[79] Kodaira Dimension and Chern Hyperbolicity of the Shafarevich Maps for Representations of of Compact Kähler Manifolds, J. Reine Angew. Math., Volume 472 (1996) no. 2, pp. 139-156 | Zbl
Cited by Sources: