On the Iitaka Conjecture C n,m for Kähler Fibre Spaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 4, pp. 813-897.

By applying the positivity theorem of direct images and a pluricanonical version of the structure theorem on the cohomology jumping loci à la Green–Lazarsfeld–Simpson, we show that the klt Kähler version of the Iitaka conjecture C n,m (Ueno, 1975) for f:XY (surjective morphism between compact Kähler manifolds with connected general fibre) holds true when the determinant of the direct image of some power of the relative canonical bundle is big on Y or when Y is a complex torus. These generalize the corresponding results of Viehweg (1983) and of Cao-Păun (2017) respectively. We further generalize the later case to the geometric orbifold setting, i.e. prove that C n,m orbifold (Campana, 2004) holds when Y is a complex torus.

En appliquant la positivité des images directes et une version pluricanonique du théorème de structure des lieux de saut cohomologique à la Green–Lazarsfeld–Simpson, nous démontrons que la version klt kählérienne de la conjecture d’Iitaka C n,m (Ueno, 1975) pour f:XY (morphisme surjectif entre variétés kählériennes compactes à fibre générale connexe) est vraie si le déterminant de l’image directe d’une certaine puissance du fibré canonique relative est gros sur Y ou si Y est un tore complexe. Ceci généralisent les résultats correspondants de Viehweg (1983) et de Cao-Păun (2017) respectivement. De plus nous généralisons le deuxième résultat ci-dessus au cadre des orbifoldes géométriques, c-à-d., nous démontrons que C n,m orbifold (Campana, 2004) est vraie quand Y est un tore complexe.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1690

Juanyong Wang 1

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_4_813_0,
     author = {Juanyong Wang},
     title = {On the {Iitaka} {Conjecture~}$C_{n,m}$ for {K\"ahler} {Fibre} {Spaces}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {813--897},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {4},
     year = {2021},
     doi = {10.5802/afst.1690},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1690/}
}
TY  - JOUR
AU  - Juanyong Wang
TI  - On the Iitaka Conjecture $C_{n,m}$ for Kähler Fibre Spaces
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 813
EP  - 897
VL  - 30
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1690/
DO  - 10.5802/afst.1690
LA  - en
ID  - AFST_2021_6_30_4_813_0
ER  - 
%0 Journal Article
%A Juanyong Wang
%T On the Iitaka Conjecture $C_{n,m}$ for Kähler Fibre Spaces
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 813-897
%V 30
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1690/
%R 10.5802/afst.1690
%G en
%F AFST_2021_6_30_4_813_0
Juanyong Wang. On the Iitaka Conjecture $C_{n,m}$ for Kähler Fibre Spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 4, pp. 813-897. doi : 10.5802/afst.1690. https://afst.centre-mersenne.org/articles/10.5802/afst.1690/

[1] Michael Artin Néron Models, Arithmetic Geometry (1986), pp. 213-230 | DOI | Zbl

[2] Constantin Bănică; Octavian Stănăşilă Algebraic Methods in the Global Theory of Complex Spaces, John Wiley & Sons, 1976 (revised English version of Metode algebrice în teoria globală a spaţiilor complexe, Etitura academiei, Bucureşti, 1974)

[3] Bo Berndtsson Curvature of Vector Bundles Associated to Holomorphic Fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl

[4] Bo Berndtsson The Openness Conjecture for Plurisubharmonic Functions (2013) (https://arxiv.org/abs/1305.5781)

[5] Bo Berndtsson; Mihai Păun Bergman Kernels and the Pseudoeffectivity of Relative Canonical Bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI | MR | Zbl

[6] Bo Berndtsson; Mihai Păun Bergman Kernels and the Subadjunction (2010) (https://arxiv.org/abs/1002.4145)

[7] Christina Birkenhake; Herberte Lang Complex Abelian Varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004 | DOI

[8] Zbigniew Błocki Suita Conjecture and the Ohsawa-Takegoshi Extension Theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl

[9] Sébastien Boucksom Divisorial Zariski Decomposition on Compact Complex Manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 4, pp. 45-67 | DOI | MR | Zbl

[10] Sébastien Boucksom Singularities of Plurisubharmonic Functions and Multiplier Ideals, 2016 (Notes of Course, http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf)

[11] Sébastien Boucksom; Jean-Pierre Demailly; Miahi Păun; Thomas Peternell The Pseudo-effective Cone of a Compact Kähler Manifold and Varieties of Negative Kodaira Dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl

[12] Sébastien Boucksom; Tommaso de Fernex; Charles Favre The Volume of an Isolated Singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1520 | MR | Zbl

[13] Sébastien Boucksom; Mattias Jonsson Tropical and non-Archimedean Limits of Degenerating Families of Volume Forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl

[14] Nero Budur Unitary Local Systems, Multiplier Ideals, and Polynomial Periodicity of Hodge Numbers, Adv. Math., Volume 221 (2009) no. 1, pp. 217-250 | DOI | MR | Zbl

[15] Nero Budur; Botong Wang Cohomology Jump Loci of Quasi-projective Varieties, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 1, pp. 227-236 | DOI | MR | Zbl

[16] Nero Budur; Botong Wang Cohomology Jump Loci of Quasi-compact Kähler Manifolds (2017) (https://arxiv.org/abs/1702.02186)

[17] Frédéric Campana Orbifolds, Special Varieties and Classification Theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-665 | DOI | Numdam | MR | Zbl

[18] Frédéric Campana Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes (2009) (Prépublication IECN https://hal.archives-ouvertes.fr/hal-00356763)

[19] Frédéric Campana; Andreas Höring; Thomas Peternell Abundance for Kähler Threefolds, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 4, pp. 971-1025 | DOI | Zbl

[20] Frédéric Campana; Vincent Koziarz; Mihai Păun Numerical Character of the Effectivity of Adjoint Line Bundles, Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 107-119 | DOI | Numdam | MR | Zbl

[21] Frédéric Campana; Thomas Peternell Geometric Stability of the Cotangent Bundle and the Universal Cover of a Projective Manifold, Bull. Soc. Math. Fr., Volume 139 (2011) no. 1, pp. 41-74 | DOI | Numdam | MR | Zbl

[22] Junyan Cao On the Approximation of Kähler Manifolds by Algebraic Varieties, Math. Ann., Volume 363 (2015) no. 1-2, pp. 393-422 | MR | Zbl

[23] Junyan Cao Ohsawa-Takegoshi Extension Theorem for Compact Kähler Manifolds and Applications, Complex and Symplectic Geometry (Springer INdAM Series), Volume 21 (2017), pp. 19-38 | MR | Zbl

[24] Junyan Cao; Andreas Höring A Decomposition Theorem for Projective Manifolds with Nef Anticanonical Bundle (2017) (to appear in J. Algebr. Geom., https://arxiv.org/abs/1706.08814)

[25] Junyan Cao; Mihai Păun Kodaira Dimension of Algebraic Fibre Space over Abelian Varieties, Invent. Math., Volume 207 (2017) no. 1, pp. 345-387 | Zbl

[26] Henri Cartan Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes, Herman, éditeur des sciences et des arts, 1961

[27] Olivier Debarre Tores et variétés abéliennes complexes, Contributions in Mathematical and Computational Sciences, 6, Société Mathématique de France; EDP Sciences, 1999

[28] Olivier Debarre Higher-Dimensional Algebraic Geometry, Universitext, Springer, 2001 | DOI

[29] Jean-Pierre Demailly Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, 1, Higher Education Press; International Press, 2010

[30] Jean-Pierre Demailly Complex Analytic and Differential Geometry, OpenContent Book https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012

[31] Jean-Pierre Demailly Extension of Holomorphic Functions Defined on non Reduced Analytic Subvarieties (2015) (https://arxiv.org/abs/1510.05230)

[32] Jean-Pierre Demailly; Lawrence Ein; Robert Lazarsfeld A Subadditivity Property of Multiplier Ideals, Mich. Math. J., Volume 48 (2000) no. 1, pp. 137-156 | MR | Zbl

[33] Fusheng Deng; Zhiwei Wang; Liyou Zhang; Xiangyu Zhou New Characterizations of Plurisubharmonic Functions and Positivity of Direct Image Sheaves (2018) (https://arxiv.org/abs/1809.10371)

[34] Ya Deng Applications of the Ohsawa–Takegoshi Extension Theorem to Direct Image Problems (2017) (https://arxiv.org/abs/1703.07279)

[35] Hélène Esnault Classification des variétés de dimension 3 et plus, Séminaire Bourbaki n°23 (1981) (Lecture Notes in Mathematics), Volume 901 (1981) (exposé 568) | DOI | Numdam | Zbl

[36] Osamu Fujino Notes on the Weak Positivity Theorem, Algebraic Varieties and Automorphism Groups, July 7-11, 2014 (Advances Studies in Pure Mathematics), Volume 75 (2017), pp. 73-118 | DOI | MR | Zbl

[37] Takao Fujita On Kähler Fibre Spaces over Curves, J. Math. Soc. Japan, Volume 30 (1978) no. 4, pp. 779-794 | MR | Zbl

[38] William Fulton Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1984 | DOI

[39] Hans Grauert; Reinhold Remmert Plurisubharmonische Funktionen in komplexen Räumen, Math. Z., Volume 65 (1956), pp. 175-194 | DOI | Zbl

[40] Mark Green; Phillip Griffiths Positivity of Vector Bundles and Hodge Theory (2018) (https://arxiv.org/abs/1803.07405)

[41] Mark Green; Robert Lazarsfeld Deformation Theory, Generic Vanishing Theorems, and some Conjectures of Enriques, Cantanese and Beauville, Invent. Math., Volume 90 (1987) no. 2, pp. 389-407 | DOI | Zbl

[42] Mark Green; Robert Lazarsfeld Higher Obstructions to Deforming Cohomology Groups of Line Bundles, J. Am. Math. Soc., Volume 4 (1991) no. 1, pp. 87-103 | DOI | MR | Zbl

[43] Qi’an Guan; Xiangyu Zhou A Proof of Demailly’s Strong Openness Conjecture, Ann. Math., Volume 182 (2015) no. 2, pp. 605-616 | DOI | MR | Zbl

[44] Qi’an Guan; Xiangyu Zhou A Solution of an L 2 Extension Problem with an Optimal Estimate and Applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl

[45] Christopher Hacon; Mihnea Popa; Christian Schnell Algebraic Fibre Spaces over Abelian Varieties: Around a Recent Theorem by Cao and Păun, Local and Global Methods in Algebraic Geometry (Contemporary Mathematics), Volume 712 (2018), pp. 143-195 | Zbl

[46] Heisuke Hironaka Flattening Theorem in Complex Analytic Geometry, Am. J. Math., Volume 97 (1975) no. 2, pp. 503-547 | DOI | MR | Zbl

[47] Andreas Höring Positivity of Direct Image Sheaves. A Geometric Point of View, Enseign. Math., Volume 56 (2010) no. 1-2, pp. 87-142 | DOI | MR | Zbl

[48] Andreas Höring; Thomas Peternell Minimal Models for Kähler Threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | Zbl

[49] Yujiro Kawamata Characterization of Abelian Varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276 | Numdam | MR | Zbl

[50] Yujiro Kawamata Kodaira Dimension of Algebraic Fibre Spaces over Curves, Invent. Math., Volume 66 (1982) no. 1, pp. 57-71 | DOI | Zbl

[51] Yujiro Kawamata Minimal Models and the Kodaira Dimension of Algebraic Fibre Spaces, J. Reine Angew. Math., Volume 1985 (1985) no. 363, pp. 1-46 | Zbl

[52] Yujiro Kawamata On the Abundance Theorem in the Case of Numerical Kodaira Dimension Zero, Am. J. Math., Volume 135 (2013) no. 1, pp. 115-124 | DOI | MR | Zbl

[53] Yujiro Kawamata; Katsumi Matsuda; Kenji Matsuki Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10 (1987), pp. 283-360 | DOI | MR | Zbl

[54] Yujiro Kawamata; Eckart Viehweg On a Characterization of an Abelian Variety in the Classification Theory of Algebraic Varieties, Compos. Math., Volume 41 (1980) no. 3, pp. 355-359 | Numdam | MR | Zbl

[55] Shoshichi Kobayashi Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, 1987 | DOI

[56] János Kollár Singularities of Pairs, Algebraic Geometry Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62 (1997), pp. 221-287 | DOI | MR | Zbl

[57] János Kollár; Shigefumi Mori Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI

[58] George Rushing Kumpf; Finn Faye Knudsen; David Bryant Mumford; Bernard Saint-Donat Toroidal Embeddings, Lecture Notes in Mathematics, 339, Springer, 1973

[59] Robert Lazarsfeld Positivity in Algebraic Geometry I & II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48 & 49, Springer, 2004

[60] John Lesieutre A Pathology of Asymptotic Multiplicity in the Relative Setting, Math. Res. Lett., Volume 23 (2016) no. 5, pp. 1433-1451 | DOI | MR | Zbl

[61] Hideyuki Matsumura Commutative Algebra, Mathematics Lecture Note Series, W. A. Benjamin, Inc., 1970

[62] Hideyuki Matsumura Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989

[63] James Stuart Milne Abelian Varieties, Arithmetic Geometry (1986), pp. 103-150 | DOI

[64] Noboru Nakayama Zariski-decomposition and Abundance, MSJ Memoirs, Mathematical Society of Japan, 2004

[65] Mihai Păun Singular Hermitian Metrics and Positivity of Direct Images of Pluricanonical Bundles, 2016 (Survey https://arxiv.org/abs/1606.00174) | Zbl

[66] Mihai Păun; Shigeharu Takayama Positivity of Twisted Relative Pluricanonical Bundles and Their Direct Images, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 211-272 | DOI | MR | Zbl

[67] Jean-Pierre Ramis; Gabriel Ruget Complexe dualisant et théorèmes de dualité en géométrie analytique complexe, Publ. Math., Inst. Hautes Étud. Sci., Volume 38 (1970), pp. 77-91 | DOI | Numdam | Zbl

[68] Hossein Raufi Singular Hermitian Metrics on Holomorphic Vector Bundles, Ark. Mat., Volume 53 (2015) no. 2, pp. 359-382 | DOI | MR | Zbl

[69] Michel Raynuad Flat Modules in Algebraic Geometry, Compos. Math., Volume 24 (1972) no. 1, pp. 11-31 | MR

[70] Carlos Simpson Subspaces of Moduli Spaces of Rank one Local Systems, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 3, pp. 361-401 | DOI | Numdam | MR | Zbl

[71] Kenji Ueno Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Mathematics, 439, Springer, 1975 | DOI

[72] Dror Varolin Three Variations on a Theme in Complex Analytic Geometry, Analytic And Algebraic Geometry: Common Problems, Different Methods (IAS/Park City Mathematics Series), Volume 17 (2010), pp. 183-295 | DOI | MR | Zbl

[73] Eckart Viehweg Rational Singularities of Higher Dimensional Schemes, Proc. Am. Math. Soc., Volume 63 (1977) no. 1, pp. 6-8 | DOI | MR | Zbl

[74] Eckart Viehweg Weak Positivity and the Additivity of the Kodaira Dimension for Certain Fibre Spaces, Algebraic Varieties and Analytic Varieties (Advanced Studies in Pure Mathematics), Volume 1 (1983), pp. 329-353 | DOI | MR | Zbl

[75] Eckart Viehweg Quasi-projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 30, Springer, 1995 | DOI

[76] Claire Voisin Théorie de Hodge et géométrie algébrique complexe, Contributions in Mathematical and Computational Sciences, 10, Société Mathématique de France; EDP Sciences, 2002

[77] Botong Wang Torsion Points on the Cohomology Jump Loci of Compact Kähler Manifolds, Math. Res. Lett., Volume 23 (2016) no. 2, pp. 545-563 | DOI | Zbl

[78] Xiangyu Zhou; Langfeng Zhu An optimal L2 Extension Theorem on Weakly Pseudoconvex Kähler Manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | Zbl

[79] Kang Zuo Kodaira Dimension and Chern Hyperbolicity of the Shafarevich Maps for Representations of π 1 of Compact Kähler Manifolds, J. Reine Angew. Math., Volume 472 (1996) no. 2, pp. 139-156 | Zbl

Cited by Sources: