Orthogonal polynomials and diffusion operators
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 985-1073.

We study the following problem: describe the triplets (Ω,g,μ) where g=(g ij (x)) is the (co)metric associated with the symmetric second order differential operator L(f)=1 ρ ij i (g ij ρ j f) defined on a domain Ω of d (that is L is a diffusion operator with reversible measure μ(dx)=ρ(x)dx) and such that there exists an orthonormal basis of 2 (μ) made of polynomials which are at the same time eigenvectors of L, where the polynomials are ranked according to their natural degree. We reduce this problem to a certain algebraic problem (for any d) and we find all solutions for d=2 when Ω is compact. Namely, in dimension d=2, and up to affine transformations, we find 10 compact domains Ω plus a one-parameter family. The proof that this list is exhaustive relies on the Plücker-like formulas for the projective dual curves applied to the complexification of Ω. We then describe some geometric origins for these various models. We also give some description of the non-compact cases in this dimension.

Nous considérons le problème suivant : décrire les triplets (Ω,g,μ)g=(g ij (x)) est la (co)métrique associée à l’opérateur différentiel du second ordre symétrique L(f)=1 ρ ij i (g ij ρ j f) défini sur un domaine Ω de d (i.e. L est un opérateur de diffusion de mesure réversible μ(dx)=ρ(x)dx) et tels qu’il existe une base orthonormale de polynômes de 2 (μ) qui sont également vecteurs propres de L, les polynômes étant classés par ordre croissant de leur degré naturel. Nous réduisons ce problème à un problème algébrique (pour tout d) et décrivons les solutions pour d=2 et Ω compact. Nous montrons que pour d=2, et à transformations affines près, il y a 10 domaines compacts Ω et une famille à un paramètre. La preuve de l’exhaustivité de ce classement repose sur des formules de type Plücker pour les courbes duales projectives appliquées à la complexification de Ω. Nous présentons alors une interprétation géométrique de ces différents modèles. Nous donnons également une description des cas non-compacts en dimension d=2.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1693

Dominique Bakry 1; Stepan Orevkov 1; Marguerite Zani 2

1 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
2 Institut Denis Poisson, Université d’Orléans, Université de Tours, CNRS, Route de Chartres, B.P. 6759, 45067, Orléans cedex 2, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_5_985_0,
     author = {Dominique Bakry and Stepan Orevkov and Marguerite Zani},
     title = {Orthogonal polynomials and diffusion operators},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {985--1073},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {5},
     year = {2021},
     doi = {10.5802/afst.1693},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1693/}
}
TY  - JOUR
AU  - Dominique Bakry
AU  - Stepan Orevkov
AU  - Marguerite Zani
TI  - Orthogonal polynomials and diffusion operators
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 985
EP  - 1073
VL  - 30
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1693/
DO  - 10.5802/afst.1693
LA  - en
ID  - AFST_2021_6_30_5_985_0
ER  - 
%0 Journal Article
%A Dominique Bakry
%A Stepan Orevkov
%A Marguerite Zani
%T Orthogonal polynomials and diffusion operators
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 985-1073
%V 30
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1693/
%R 10.5802/afst.1693
%G en
%F AFST_2021_6_30_5_985_0
Dominique Bakry; Stepan Orevkov; Marguerite Zani. Orthogonal polynomials and diffusion operators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 985-1073. doi : 10.5802/afst.1693. https://afst.centre-mersenne.org/articles/10.5802/afst.1693/

[1] Pavel S. Alexandrov Combinatorial Topology, Vol 1,2 and 3, Dover Publications, 1998 (reprint of 1956, 1957 and 1960)

[2] George E. Andrews; Richard Askey; Ranjan Roy Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999, xvi+664 pages | DOI

[3] Shôrô Araki On root systems and an infinitesimal classification of irreducible symmetric spaces, Osaka J. Math., Volume 13 (1962), pp. 1-34 | MR | Zbl

[4] Dominique Bakry; Xavier Bressaud Diffusion with polynomial eigenvectors via finite subgroups of O(3), Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 2-3, pp. 683-721 | DOI | MR | Zbl

[5] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2013

[6] Dominique Bakry; Olivier Mazet Characterization of Markov semigroups on associated to some families of orthogonal polynomials, Séminaire de Probabilités XXXVII (Lecture Notes in Mathematics), Volume 1832, Springer, 2003, pp. 60-80 | DOI | MR | Zbl

[7] Dominique Bakry; Marguerite Zani Dyson processes associated with associative algebras: the Clifford case, Geometric aspects of functional analysis. Proceedings of the Israel seminar (GAFA) 2011–2013 (Lecture Notes in Mathematics), Volume 2116, Springer, 2014, pp. 1-37 | DOI | MR | Zbl

[8] Christian Berg; J. P. Reus Christensen Density questions in the classical theory of moments, Ann. Inst. Fourier, Volume 31 (1981) no. 3, pp. 99-114 | DOI | Numdam | MR | Zbl

[9] Salomon Bochner Über Sturm-Liouvillesche Polynomsysteme, Math. Z., Volume 29 (1929) no. 1, pp. 730-736 | DOI | MR | Zbl

[10] Boele L. J. Braaksma; Barend Meulenbed Jacobi polynomials as spherical harmonics, Nederl. Akad. Wet., Proc., Ser. A, Volume 71 (1968), pp. 384-389

[11] Egbert Brieskorn; Horst Knörrer Plane algebraic curves, Springer, 1986 | DOI

[12] Henri C. Brinkman; Frederik Zernike Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome, Nederl. Akad. Wet., Proc., Ser. A, Volume 38 (1935), pp. 161-170 | Zbl

[13] Élie Cartan Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., Volume 17 (1938), pp. 177-191 | DOI | Zbl

[14] Élie Cartan Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z., Volume 45 (1939), pp. 335-367 | DOI | Zbl

[15] Élie Cartan Sur quelques familles remarquables d’hypersurfaces, C. R. Congrès Math. Liège, 1939, pp. 30-41 | Zbl

[16] Élie Cartan Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Rev., Ser. A, Univ. Nac. Tucumán, Volume A1 (1940), pp. 5-22 | Zbl

[17] John H. Conway; Derek A. Smith On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, 2003 | DOI

[18] Aad Dijksma; Tom Koornwinder Spherical harmonics and the product of two Jacobi polynomials, Nederl. Akad. Wet., Proc., Ser. A, Volume 74 (1971), pp. 191-196 | MR | Zbl

[19] Alexandru Dimca On the de Rham cohomology of a hypersurface complement, Am. J. Math., Volume 113 (1991) no. 4, pp. 763-771 | DOI | MR | Zbl

[20] Yan Doumerc Matrix Jacobi Process, Ph. D. Thesis, Université Toulouse 3 (2005)

[21] Charles Dunkl Reflection groups and orthogonal polynomials on the sphere, Math. Z., Volume 197 (1988) no. 1, pp. 33-60 | DOI | MR | Zbl

[22] Charles Dunkl Differential–difference operators associated to reflection groups, Trans. Am. Math. Soc., Volume 311 (1989) no. 1, pp. 167-183 | DOI | MR | Zbl

[23] Charles Dunkl; Yuan Xu Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, 2001 | DOI

[24] Anatolij Dvurčenskij; Pekka Lahti; Kari Ylinen The uniqueness question in the multidimensional moment problem with applications to phase space observables, Rep. Math. Phys., Volume 50 (2002) no. 1, pp. 55-68 | DOI | MR | Zbl

[25] Lidia Fernández; Teresa E. Pérez; Miguel A. Piñar Classical orthogonal polynomials in two variables: a matrix approach, Numer. Algorithms, Volume 39 (2005) no. 1-3, pp. 131-142 | DOI | MR | Zbl

[26] Bengt Fornberg A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, 1998

[27] Gert-Martin Greuel; Christoph Lossen; E. Shustin Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, 2007

[28] Phillip A. Griffiths On the periods of certain rational integrals: I, II, Ann. Math., Volume 90 (1969), p. 460-495, 496–541 | DOI | MR | Zbl

[29] Benyu Guo; Jie Shen; Li-Lian Wang Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput., Volume 27 (2006) no. 1-3, pp. 305-322 | MR | Zbl

[30] Benyu Guo; Jie Shen; Li-Lian Wang Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., Volume 59 (2009) no. 5, pp. 1011-1028 | MR | Zbl

[31] Benyu Guo; Zhengsu Wan; Zhongqing Wang Jacobi pseudospectral method for fourth order problems, J. Comput. Math., Volume 24 (2006) no. 4, pp. 481-500 | MR | Zbl

[32] Wolfgang Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., Volume 2 (1949), pp. 4-34 | DOI | MR | Zbl

[33] Peter Hall The Bootstrap and Edgeworth expansion, Springer Series in Statistics, Springer, 1992 | DOI

[34] Harish-Chandra Spherical Functions on a Semisimple Lie Group I, Am. J. Math., Volume 80 (1958), pp. 241-310 | DOI

[35] Harish-Chandra Spherical Functions on a Semisimple Lie Group II, Am. J. Math., Volume 80 (1958), pp. 553-613 | DOI | MR | Zbl

[36] Gert J. Heckman Root systems and hypergeometric functions II, Compos. Math., Volume 64 (1987), pp. 353-373 | Numdam | MR | Zbl

[37] Gert J. Heckman An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991) no. 2, pp. 341-350 | DOI | MR | Zbl

[38] Gert J. Heckman Dunkl operators, Séminaire Bourbaki. Volume 1996/97. Exposés 820–834 (Astérisque), Volume 245, Société Mathématique de France, 1997, pp. 223-246 | Numdam | Zbl

[39] Gert J. Heckman; Eric M. Opdam Root sytems and hypergeometric functions I, Compos. Math., Volume 64 (1987), pp. 329-352

[40] Gert J. Heckman; Henrik Schlichtkrull Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Mathematics, 16, Academic Press Inc., 1994

[41] Sigurdur Helgason Groups and Geometric Analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press Inc., 1984

[42] Tom Koornwinder The addition formula for Jacobi polynomials and spherical harmonics, SIAM J. Appl. Math., Volume 25 (1973), pp. 236-246 Lie algebras: applications and computational methods (Conf., Drexel Univ., Philadelphia, Pa., 1972) | DOI | MR | Zbl

[43] Tom Koornwinder Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 48-58 | Zbl

[44] Tom Koornwinder Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. II, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 59-66 | Zbl

[45] Tom Koornwinder Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 357-369 | Zbl

[46] Tom Koornwinder Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. IV, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 370-381 | Zbl

[47] Tom Koornwinder Two-variable analogues of the classical orthogonal polynomials, Theory and application of special functions. Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Volume 35 (1975) | MR | Zbl

[48] Tom Koornwinder; Alan L. Schwartz Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Approx., Volume 13 (1997) no. 4, pp. 537-567 | DOI | MR | Zbl

[49] Harry L. Krall; Isador M. Sheffer Orthogonal polynomials in two variables, Ann. Mat. Pura Appl., Volume 76 (1967), pp. 325-376 | DOI | MR

[50] Vik. S. Kulikov A remark on classical Pluecker’s formulae, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 5, pp. 959-967 | DOI | Numdam | MR | Zbl

[51] Solomon Lefschetz Algebraic Topology, Colloquium Publications, 27, American Mathematical Society, 1942

[52] Ian G. Macdonald Symmetric functions and orthogonal polynomials, University Lecture Series, 12, American Mathematical Society, 1998

[53] Ian G. Macdonald Orthogonal polynomials associated with root systems, Sémin. Lothar. Comb., Volume 45 (2000), B45a, 40 pages | MR | Zbl

[54] Olivier Mazet Classification des semi–groupes de diffusion sur associés à une famille de polynômes orthogonaux, Séminaire de probabilités XXXI (Lecture Notes in Mathematics), Volume 1655, Springer, 1997, pp. 40-53 | DOI | MR | Zbl

[55] Burnett Meyer On the symmetries of spherical harmonics, Can. J. Math., Volume 6 (1954), pp. 135-157 | DOI | MR | Zbl

[56] John Milnor Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, 1968

[57] María Álvarez de Morales; Lidia Fernández; Teresa E. Pérez; Miguel A. Piñar A matrix Rodrigues formula for classical orthogonal polynomials in two variables, J. Approx. Theory, Volume 157 (2009) no. 1, pp. 32-52 | DOI | MR | Zbl

[58] Arnold F. Nikiforov; Sergei K. Suslov; Vasili. B. Uvarov Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer, 1991 | DOI

[59] Eric M. Opdam Root systems and hypergeometric functions, III, IV, Compos. Math., Volume 67 (1988), p. 21-49, 191–209 | Numdam | Zbl

[60] Lev Pontrjagin The general topological theorem of duality for closed sets, Ann. Math., Volume 35 (1934) no. 4, pp. 904-914 | DOI | MR | Zbl

[61] Nicolas Privault Random Hermite polynomials and Girsanov identities on the Wiener space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 13 (2010) no. 4, pp. 663-675 | DOI | MR | Zbl

[62] Margit Rösler Generalized Hermite polynomials and the heat equation for Dunkl operators, Commun. Math. Phys., Volume 192 (1998) no. 3, pp. 519-542 | MR | Zbl

[63] Margit Rösler Dunkl operators: Theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) (Lecture Notes in Mathematics), Volume 1817, Springer, 2003 | DOI | MR | Zbl

[64] Thomas O. Sherman The Helgason Fourier transform for compact Riemannian symmetric spaces of rank one, Acta Math., Volume 164 (1990) no. 1-2, pp. 73-144 | DOI | MR | Zbl

[65] Lev Soukhanov On the phenomena of constant curvature in the diffusion-orthogonal polynomials (2014) (https://arxiv.org/abs/1409.5332v1)

[66] Lev Soukhanov Diffusion-orthogonal polynomial systems of maximal weighted degree, Ann. Fac. Sci. Toulouse, Math., Volume 26 (2017) no. 2, pp. 511-518 | DOI | Numdam | MR | Zbl

[67] Ida G. Sprinkhuizen-Kuyper Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal., Volume 7 (1976), pp. 501-518 | DOI | MR

[68] Elias M. Stein; Guido Weiss Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971

[69] Pavel K. Suetin Orthogonal polynomials in two variables (Translated from the 1988 Russian original by E. V. Pankratiev), Analytical Methods and Special Functions, 3, Gordon and Breach Science Publishers, 1999

[70] Gabor Szegő Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975, xiii+432 pages | MR

[71] François Trèves Topological vector spaces, distributions and kernels, Academic Press Inc., 1967

[72] W. T. M. Verkley A spectral model for two-dimensional incompressible fluid flow in a circular basin. I, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 110-114 | MR | Zbl

[73] W. T. M. Verkley A spectral model for two-dimensional incompressible fluid flow in a circular basin. II, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 115-131 | DOI | MR | Zbl

[74] Luc Vinet; Alexei Zhedanov Generalized Bochner theorem: characterization of the Askey–Wilson polynomials, J. Comput. Appl. Math., Volume 211 (2008) no. 1, pp. 45-56 | DOI | MR | Zbl

[75] Robert J. Walker Algebraic curves, Princeton Mathematical Series, 13, Princeton University Press, 1950 | MR

[76] Paul Williams Jacobi Pseudospectral Method for Solving Optimal Control Problems, J. Guid. Control Dyn., Volume 27 (2004) no. 2, pp. 293-297 | DOI

Cited by Sources: