We study the following problem: describe the triplets where is the (co)metric associated with the symmetric second order differential operator defined on a domain of (that is is a diffusion operator with reversible measure ) and such that there exists an orthonormal basis of made of polynomials which are at the same time eigenvectors of , where the polynomials are ranked according to their natural degree. We reduce this problem to a certain algebraic problem (for any ) and we find all solutions for when is compact. Namely, in dimension , and up to affine transformations, we find compact domains plus a one-parameter family. The proof that this list is exhaustive relies on the Plücker-like formulas for the projective dual curves applied to the complexification of . We then describe some geometric origins for these various models. We also give some description of the non-compact cases in this dimension.
Nous considérons le problème suivant : décrire les triplets où est la (co)métrique associée à l’opérateur différentiel du second ordre symétrique défini sur un domaine de (i.e. est un opérateur de diffusion de mesure réversible ) et tels qu’il existe une base orthonormale de polynômes de qui sont également vecteurs propres de , les polynômes étant classés par ordre croissant de leur degré naturel. Nous réduisons ce problème à un problème algébrique (pour tout ) et décrivons les solutions pour et compact. Nous montrons que pour , et à transformations affines près, il y a domaines compacts et une famille à un paramètre. La preuve de l’exhaustivité de ce classement repose sur des formules de type Plücker pour les courbes duales projectives appliquées à la complexification de . Nous présentons alors une interprétation géométrique de ces différents modèles. Nous donnons également une description des cas non-compacts en dimension .
Accepted:
Published online:
Dominique Bakry 1; Stepan Orevkov 1; Marguerite Zani 2
@article{AFST_2021_6_30_5_985_0, author = {Dominique Bakry and Stepan Orevkov and Marguerite Zani}, title = {Orthogonal polynomials and diffusion operators}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {985--1073}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {5}, year = {2021}, doi = {10.5802/afst.1693}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1693/} }
TY - JOUR AU - Dominique Bakry AU - Stepan Orevkov AU - Marguerite Zani TI - Orthogonal polynomials and diffusion operators JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 985 EP - 1073 VL - 30 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1693/ DO - 10.5802/afst.1693 LA - en ID - AFST_2021_6_30_5_985_0 ER -
%0 Journal Article %A Dominique Bakry %A Stepan Orevkov %A Marguerite Zani %T Orthogonal polynomials and diffusion operators %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 985-1073 %V 30 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1693/ %R 10.5802/afst.1693 %G en %F AFST_2021_6_30_5_985_0
Dominique Bakry; Stepan Orevkov; Marguerite Zani. Orthogonal polynomials and diffusion operators. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 985-1073. doi : 10.5802/afst.1693. https://afst.centre-mersenne.org/articles/10.5802/afst.1693/
[1] Combinatorial Topology, Vol 1,2 and 3, Dover Publications, 1998 (reprint of 1956, 1957 and 1960)
[2] Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999, xvi+664 pages | DOI
[3] On root systems and an infinitesimal classification of irreducible symmetric spaces, Osaka J. Math., Volume 13 (1962), pp. 1-34 | MR | Zbl
[4] Diffusion with polynomial eigenvectors via finite subgroups of , Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 2-3, pp. 683-721 | DOI | MR | Zbl
[5] Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2013
[6] Characterization of Markov semigroups on associated to some families of orthogonal polynomials, Séminaire de Probabilités XXXVII (Lecture Notes in Mathematics), Volume 1832, Springer, 2003, pp. 60-80 | DOI | MR | Zbl
[7] Dyson processes associated with associative algebras: the Clifford case, Geometric aspects of functional analysis. Proceedings of the Israel seminar (GAFA) 2011–2013 (Lecture Notes in Mathematics), Volume 2116, Springer, 2014, pp. 1-37 | DOI | MR | Zbl
[8] Density questions in the classical theory of moments, Ann. Inst. Fourier, Volume 31 (1981) no. 3, pp. 99-114 | DOI | Numdam | MR | Zbl
[9] Über Sturm-Liouvillesche Polynomsysteme, Math. Z., Volume 29 (1929) no. 1, pp. 730-736 | DOI | MR | Zbl
[10] Jacobi polynomials as spherical harmonics, Nederl. Akad. Wet., Proc., Ser. A, Volume 71 (1968), pp. 384-389
[11] Plane algebraic curves, Springer, 1986 | DOI
[12] Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome, Nederl. Akad. Wet., Proc., Ser. A, Volume 38 (1935), pp. 161-170 | Zbl
[13] Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., Volume 17 (1938), pp. 177-191 | DOI | Zbl
[14] Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z., Volume 45 (1939), pp. 335-367 | DOI | Zbl
[15] Sur quelques familles remarquables d’hypersurfaces, C. R. Congrès Math. Liège, 1939, pp. 30-41 | Zbl
[16] Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Rev., Ser. A, Univ. Nac. Tucumán, Volume A1 (1940), pp. 5-22 | Zbl
[17] On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, 2003 | DOI
[18] Spherical harmonics and the product of two Jacobi polynomials, Nederl. Akad. Wet., Proc., Ser. A, Volume 74 (1971), pp. 191-196 | MR | Zbl
[19] On the de Rham cohomology of a hypersurface complement, Am. J. Math., Volume 113 (1991) no. 4, pp. 763-771 | DOI | MR | Zbl
[20] Matrix Jacobi Process, Ph. D. Thesis, Université Toulouse 3 (2005)
[21] Reflection groups and orthogonal polynomials on the sphere, Math. Z., Volume 197 (1988) no. 1, pp. 33-60 | DOI | MR | Zbl
[22] Differential–difference operators associated to reflection groups, Trans. Am. Math. Soc., Volume 311 (1989) no. 1, pp. 167-183 | DOI | MR | Zbl
[23] Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, 2001 | DOI
[24] The uniqueness question in the multidimensional moment problem with applications to phase space observables, Rep. Math. Phys., Volume 50 (2002) no. 1, pp. 55-68 | DOI | MR | Zbl
[25] Classical orthogonal polynomials in two variables: a matrix approach, Numer. Algorithms, Volume 39 (2005) no. 1-3, pp. 131-142 | DOI | MR | Zbl
[26] A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, 1998
[27] Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, 2007
[28] On the periods of certain rational integrals: I, II, Ann. Math., Volume 90 (1969), p. 460-495, 496–541 | DOI | MR | Zbl
[29] Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput., Volume 27 (2006) no. 1-3, pp. 305-322 | MR | Zbl
[30] Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., Volume 59 (2009) no. 5, pp. 1011-1028 | MR | Zbl
[31] Jacobi pseudospectral method for fourth order problems, J. Comput. Math., Volume 24 (2006) no. 4, pp. 481-500 | MR | Zbl
[32] Über Orthogonalpolynome, die -Differenzengleichungen genügen, Math. Nachr., Volume 2 (1949), pp. 4-34 | DOI | MR | Zbl
[33] The Bootstrap and Edgeworth expansion, Springer Series in Statistics, Springer, 1992 | DOI
[34] Spherical Functions on a Semisimple Lie Group I, Am. J. Math., Volume 80 (1958), pp. 241-310 | DOI
[35] Spherical Functions on a Semisimple Lie Group II, Am. J. Math., Volume 80 (1958), pp. 553-613 | DOI | MR | Zbl
[36] Root systems and hypergeometric functions II, Compos. Math., Volume 64 (1987), pp. 353-373 | Numdam | MR | Zbl
[37] An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math., Volume 103 (1991) no. 2, pp. 341-350 | DOI | MR | Zbl
[38] Dunkl operators, Séminaire Bourbaki. Volume 1996/97. Exposés 820–834 (Astérisque), Volume 245, Société Mathématique de France, 1997, pp. 223-246 | Numdam | Zbl
[39] Root sytems and hypergeometric functions I, Compos. Math., Volume 64 (1987), pp. 329-352
[40] Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Mathematics, 16, Academic Press Inc., 1994
[41] Groups and Geometric Analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press Inc., 1984
[42] The addition formula for Jacobi polynomials and spherical harmonics, SIAM J. Appl. Math., Volume 25 (1973), pp. 236-246 Lie algebras: applications and computational methods (Conf., Drexel Univ., Philadelphia, Pa., 1972) | DOI | MR | Zbl
[43] Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 48-58 | Zbl
[44] Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. II, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 59-66 | Zbl
[45] Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 357-369 | Zbl
[46] Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. IV, Nederl. Akad. Wet., Proc., Ser. A, Volume 77 (1974), pp. 370-381 | Zbl
[47] Two-variable analogues of the classical orthogonal polynomials, Theory and application of special functions. Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Volume 35 (1975) | MR | Zbl
[48] Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Approx., Volume 13 (1997) no. 4, pp. 537-567 | DOI | MR | Zbl
[49] Orthogonal polynomials in two variables, Ann. Mat. Pura Appl., Volume 76 (1967), pp. 325-376 | DOI | MR
[50] A remark on classical Pluecker’s formulae, Ann. Fac. Sci. Toulouse, Math., Volume 25 (2016) no. 5, pp. 959-967 | DOI | Numdam | MR | Zbl
[51] Algebraic Topology, Colloquium Publications, 27, American Mathematical Society, 1942
[52] Symmetric functions and orthogonal polynomials, University Lecture Series, 12, American Mathematical Society, 1998
[53] Orthogonal polynomials associated with root systems, Sémin. Lothar. Comb., Volume 45 (2000), B45a, 40 pages | MR | Zbl
[54] Classification des semi–groupes de diffusion sur associés à une famille de polynômes orthogonaux, Séminaire de probabilités XXXI (Lecture Notes in Mathematics), Volume 1655, Springer, 1997, pp. 40-53 | DOI | MR | Zbl
[55] On the symmetries of spherical harmonics, Can. J. Math., Volume 6 (1954), pp. 135-157 | DOI | MR | Zbl
[56] Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, 1968
[57] A matrix Rodrigues formula for classical orthogonal polynomials in two variables, J. Approx. Theory, Volume 157 (2009) no. 1, pp. 32-52 | DOI | MR | Zbl
[58] Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer, 1991 | DOI
[59] Root systems and hypergeometric functions, III, IV, Compos. Math., Volume 67 (1988), p. 21-49, 191–209 | Numdam | Zbl
[60] The general topological theorem of duality for closed sets, Ann. Math., Volume 35 (1934) no. 4, pp. 904-914 | DOI | MR | Zbl
[61] Random Hermite polynomials and Girsanov identities on the Wiener space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 13 (2010) no. 4, pp. 663-675 | DOI | MR | Zbl
[62] Generalized Hermite polynomials and the heat equation for Dunkl operators, Commun. Math. Phys., Volume 192 (1998) no. 3, pp. 519-542 | MR | Zbl
[63] Dunkl operators: Theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) (Lecture Notes in Mathematics), Volume 1817, Springer, 2003 | DOI | MR | Zbl
[64] The Helgason Fourier transform for compact Riemannian symmetric spaces of rank one, Acta Math., Volume 164 (1990) no. 1-2, pp. 73-144 | DOI | MR | Zbl
[65] On the phenomena of constant curvature in the diffusion-orthogonal polynomials (2014) (https://arxiv.org/abs/1409.5332v1)
[66] Diffusion-orthogonal polynomial systems of maximal weighted degree, Ann. Fac. Sci. Toulouse, Math., Volume 26 (2017) no. 2, pp. 511-518 | DOI | Numdam | MR | Zbl
[67] Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal., Volume 7 (1976), pp. 501-518 | DOI | MR
[68] Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971
[69] Orthogonal polynomials in two variables (Translated from the 1988 Russian original by E. V. Pankratiev), Analytical Methods and Special Functions, 3, Gordon and Breach Science Publishers, 1999
[70] Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975, xiii+432 pages | MR
[71] Topological vector spaces, distributions and kernels, Academic Press Inc., 1967
[72] A spectral model for two-dimensional incompressible fluid flow in a circular basin. I, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 110-114 | MR | Zbl
[73] A spectral model for two-dimensional incompressible fluid flow in a circular basin. II, J. Comput. Phys., Volume 136 (1997) no. 1, pp. 115-131 | DOI | MR | Zbl
[74] Generalized Bochner theorem: characterization of the Askey–Wilson polynomials, J. Comput. Appl. Math., Volume 211 (2008) no. 1, pp. 45-56 | DOI | MR | Zbl
[75] Algebraic curves, Princeton Mathematical Series, 13, Princeton University Press, 1950 | MR
[76] Jacobi Pseudospectral Method for Solving Optimal Control Problems, J. Guid. Control Dyn., Volume 27 (2004) no. 2, pp. 293-297 | DOI
Cited by Sources: