The purpose of this note is to introduce a trick which relates the (non)-vanishing of the top-dimensional -Betti numbers of actions with that of sub-actions. We provide three different types of applications: we prove that the -Betti numbers of and (and of their Torelli subgroups) do not vanish in degree equal to their virtual cohomological dimension, we prove that the subgroups of the -manifold groups have vanishing -Betti numbers in degree and and we figure out the ergodic dimension of certain direct products of the form where is infinite amenable.
Le but de cette note est d’introduire une astuce qui relie l’annulation (ou la non-annulation) du nombre de Betti en dimension maximale des actions d’un groupe avec l’annulation pour ses sous-actions. On fournit trois différents types d’applications : on montre que les nombres de Betti de et (et de leurs sous-groupes de Torelli) ne s’annulent pas en degré égal à leur dimension cohomologique virtuelle ; on prouve qu’un sous-groupe quelconque du groupe fondamental d’une variété compacte de dimension a ses nombres de Betti nuls en degré et et enfin, on parvient à déterminer la dimension ergodique de certains produits directs de la forme où est moyennable infini.
Accepted:
Published online:
Keywords: $\ell ^2$-Betti numbers, measured group theory, cohomological dimension, ergodic dimension, $\mathrm{Out}(\mathbf{F}_n), \mathrm{Aut}(\mathbf{F}_n)$, $3$-dimensional manifolds.
Damien Gaboriau 1; Camille Noûs 2
@article{AFST_2021_6_30_5_1121_0, author = {Damien Gaboriau and Camille No\^us}, title = {On the top-dimensional $\ell ^2${-Betti} numbers}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1121--1137}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {5}, year = {2021}, doi = {10.5802/afst.1695}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1695/} }
TY - JOUR AU - Damien Gaboriau AU - Camille Noûs TI - On the top-dimensional $\ell ^2$-Betti numbers JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 1121 EP - 1137 VL - 30 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1695/ DO - 10.5802/afst.1695 LA - en ID - AFST_2021_6_30_5_1121_0 ER -
%0 Journal Article %A Damien Gaboriau %A Camille Noûs %T On the top-dimensional $\ell ^2$-Betti numbers %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 1121-1137 %V 30 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1695/ %R 10.5802/afst.1695 %G en %F AFST_2021_6_30_5_1121_0
Damien Gaboriau; Camille Noûs. On the top-dimensional $\ell ^2$-Betti numbers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 1121-1137. doi : 10.5802/afst.1695. https://afst.centre-mersenne.org/articles/10.5802/afst.1695/
[1] Higher dimensional cost and profinite actions, 2022 (in preparation)
[2] Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) (Astérisque), Volume 32-33, Société Mathématique de France, 1974, pp. 43-72 | Zbl
[3] The rational homology of the outer automorphism group of , New York J. Math., Volume 22 (2016), pp. 191-197 | MR | Zbl
[4] Around the homology of , 2022 (in preparation)
[5] Automorphism groups of residually finite groups, J. Lond. Math. Soc., Volume 38 (1963), pp. 117-118 | DOI | MR | Zbl
[6] Geometrisation of 3-manifolds, EMS Tracts in Mathematics, 13, European Mathematical Society, 2010 | DOI
[7] Dimension of the Torelli group for , Invent. Math., Volume 170 (2007) no. 1, pp. 1-32 | DOI | MR | Zbl
[8] Van Kampen’s embedding obstruction for discrete groups, Invent. Math., Volume 150 (2002) no. 2, pp. 219-235 | DOI | MR | Zbl
[9] The -cohomology of negatively curved Riemannian symmetric spaces, Ann. Acad. Sci. Fenn., Math., Volume 10 (1985), pp. 95-105 | DOI | MR | Zbl
[10] The Euler characteristic of , Comment. Math. Helv., Volume 95 (2020) no. 4, pp. 703-748 | DOI | MR | Zbl
[11] Automorphism groups of free groups, surface groups and free abelian groups, Problems on mapping class groups and related topics (Proceedings of Symposia in Pure Mathematics), Volume 74, American Mathematical Society, 2006, pp. 301-316 | DOI | MR | Zbl
[12] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI
[13] -cohomology and group cohomology, Topology, Volume 25 (1986) no. 2, pp. 189-215 | DOI | MR | Zbl
[14] One-ended spanning subforests and treeability of groups (2021) (https://arxiv.org/abs/2104.07431)
[15] Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978) (Lecture Notes in Mathematics), Volume 725, Springer, 1978, pp. 19-143 | DOI | Zbl
[16] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | DOI | MR | Zbl
[17] Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, XXV, Gauthier-Villars, 1969 | Numdam
[18] harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Am. Math. Soc., Volume 77 (1979), pp. 395-400 | MR | Zbl
[19] Introduction to -methods in topology: reduced -homology, harmonic chains, -Betti numbers, Isr. J. Math., Volume 117 (2000), pp. 183-219 | DOI | Zbl
[20] On the Lusternik–Schnirelmann category of abstract groups, Ann. Math., Volume 65 (1957), pp. 517-518 | DOI | MR | Zbl
[21] Invariants de relations d’équivalence et de groupes, Publ. Math., Volume 95 (2002), pp. 93-150 | DOI | Zbl
[22] On the ergodic dimension (2022) (in preparation)
[23] A measurable-group-theoretic solution to von Neumann’s problem, Invent. Math., Volume 177 (2009) no. 3, pp. 533-540 | DOI | MR | Zbl
[24] On the residual finiteness of certain mapping class groups, J. Lond. Math. Soc., Volume 9 (1974), pp. 160-164 | DOI | MR | Zbl
[25] Homological stability for automorphism groups of free groups, Comment. Math. Helv., Volume 70 (1995) no. 1, pp. 39-62 | DOI | MR | Zbl
[26] Introduction to -invariants, Lecture Notes in Mathematics, 2247, Springer, 2019 | DOI | MR
[27] The mapping class group from the viewpoint of measure equivalence theory, Memoirs of the American Mathematical Society, 916, American Mathematical Society, 2008, viii+190 pages | MR
[28] Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | DOI | MR | Zbl
[29] Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Dtsch. Math.-Ver., Volume 38 (1929), pp. 248-259
[30] -topological invariants of -manifolds, Invent. Math., Volume 120 (1995) no. 1, pp. 15-60 | DOI | MR | Zbl
[31] Approximating -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | MR | Zbl
[32] Dimension theory of arbitrary modules over finite von Neumann algebras and -Betti numbers. II. Applications to Grothendieck groups, -Euler characteristics and Burnside groups, J. Reine Angew. Math. (1998), pp. 213-236 | DOI | MR | Zbl
[33] -invariants: theory and applications to geometry and -theory, Theory and applications, 44, Springer, 2002
[34] Über -dimensionale Gittertransformationen, Acta Math., Volume 64 (1935), pp. 353-367 | DOI | Zbl
[35] A unique decomposition theorem for -manifolds, Am. J. Math., Volume 84 (1962), pp. 1-7 | DOI | MR | Zbl
[36] Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR | Zbl
[37] The rational homology group of for , Exp. Math., Volume 17 (2008) no. 2, pp. 167-179 | DOI | MR | Zbl
[38] Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Am. Math. Soc., Volume 2 (1980) no. 1, pp. 161-164 | DOI | MR | Zbl
[39] The entropy formula for the Ricci flow and its geometric applications (2002) (https://arxiv.org/abs/math/0211159)
[40] Ricci flow with surgery on three-manifolds (2003) (https://arxiv.org/abs/math/0303109)
[41] A spectral sequence to compute -Betti numbers of groups and groupoids, J. Lond. Math. Soc., Volume 81 (2010) no. 3, pp. 747-773 | DOI | MR | Zbl
[42] Arbres, amalgames, , Astérisque, 46, Société Mathématique de France, 1977
[43] The cohomology of automorphism groups of free groups, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 1101-1117 | Zbl
Cited by Sources: