logo AFST
On the top-dimensional 2 -Betti numbers
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 5, pp. 1121-1137.

Le but de cette note est d’introduire une astuce qui relie l’annulation (ou la non-annulation) du nombre de Betti 2 en dimension maximale des actions d’un groupe avec l’annulation pour ses sous-actions. On fournit trois différents types d’applications : on montre que les nombres de Betti 2 de Aut(F n ) et Out(F n ) (et de leurs sous-groupes de Torelli) ne s’annulent pas en degré égal à leur dimension cohomologique virtuelle ; on prouve qu’un sous-groupe quelconque du groupe fondamental d’une variété compacte de dimension 3 a ses nombres de Betti 2 nuls en degré 3 et 2 et enfin, on parvient à déterminer la dimension ergodique de certains produits directs de la forme H×AA est moyennable infini.

The purpose of this note is to introduce a trick which relates the (non)-vanishing of the top-dimensional 2 -Betti numbers of actions with that of sub-actions. We provide three different types of applications: we prove that the 2 -Betti numbers of Aut(F n ) and Out(F n ) (and of their Torelli subgroups) do not vanish in degree equal to their virtual cohomological dimension, we prove that the subgroups of the 3-manifold groups have vanishing 2 -Betti numbers in degree 3 and 2 and we figure out the ergodic dimension of certain direct products of the form H×A where A is infinite amenable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1695
Classification : 37A20, 19K56, 20F28, 20E15, 57MXX
Mots clés : $\ell ^2$-Betti numbers, measured group theory, cohomological dimension, ergodic dimension, $\mathrm{Out}(\mathbf{F}_n), \mathrm{Aut}(\mathbf{F}_n)$, $3$-dimensional manifolds.
Damien Gaboriau 1 ; Camille Noûs 2

1 CNRS & U.M.P.A., Ecole Normale Supérieure de Lyon, UMR 5669, 46 allée d’Italie, 69364 Lyon cedex 07, France
2 Laboratoire Cogitamus
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2021_6_30_5_1121_0,
     author = {Damien Gaboriau and Camille No\^us},
     title = {On the top-dimensional $\ell ^2${-Betti} numbers},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1121--1137},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {5},
     year = {2021},
     doi = {10.5802/afst.1695},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1695/}
}
TY  - JOUR
AU  - Damien Gaboriau
AU  - Camille Noûs
TI  - On the top-dimensional $\ell ^2$-Betti numbers
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 1121
EP  - 1137
VL  - 30
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1695/
DO  - 10.5802/afst.1695
LA  - en
ID  - AFST_2021_6_30_5_1121_0
ER  - 
%0 Journal Article
%A Damien Gaboriau
%A Camille Noûs
%T On the top-dimensional $\ell ^2$-Betti numbers
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 1121-1137
%V 30
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1695/
%R 10.5802/afst.1695
%G en
%F AFST_2021_6_30_5_1121_0
Damien Gaboriau; Camille Noûs. On the top-dimensional $\ell ^2$-Betti numbers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 5, pp. 1121-1137. doi : 10.5802/afst.1695. https://afst.centre-mersenne.org/articles/10.5802/afst.1695/

[1] M. Abért; Damien Gaboriau Higher dimensional cost and profinite actions, 2022 (in preparation)

[2] Michael F. Atiyah Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) (Astérisque), Volume 32-33, Société Mathématique de France, 1974, pp. 43-72 | Zbl

[3] Laurent Bartholdi The rational homology of the outer automorphism group of F 7 , New York J. Math., Volume 22 (2016), pp. 191-197 | MR | Zbl

[4] Laurent Bartholdi; Damien Gaboriau Around the homology of Out(𝔽 n ), 2022 (in preparation)

[5] Gilbert Baumslag Automorphism groups of residually finite groups, J. Lond. Math. Soc., Volume 38 (1963), pp. 117-118 | DOI | MR | Zbl

[6] Laurent Bessières; Gérard Besson; Sylvain Maillot; Michel Boileau; Joan Porti Geometrisation of 3-manifolds, EMS Tracts in Mathematics, 13, European Mathematical Society, 2010 | DOI

[7] Mladen Bestvina; Kai-Uwe Bux; Dan Margalit Dimension of the Torelli group for Out (F n ), Invent. Math., Volume 170 (2007) no. 1, pp. 1-32 | DOI | MR | Zbl

[8] Mladen Bestvina; Michael Kapovich; Bruce Kleiner Van Kampen’s embedding obstruction for discrete groups, Invent. Math., Volume 150 (2002) no. 2, pp. 219-235 | DOI | MR | Zbl

[9] Armand Borel The L 2 -cohomology of negatively curved Riemannian symmetric spaces, Ann. Acad. Sci. Fenn., Math., Volume 10 (1985), pp. 95-105 | DOI | MR | Zbl

[10] Michael Borinsky; Karen Vogtmann The Euler characteristic of Out(F n ), Comment. Math. Helv., Volume 95 (2020) no. 4, pp. 703-748 | DOI | MR | Zbl

[11] Martin R. Bridson; Karen Vogtmann Automorphism groups of free groups, surface groups and free abelian groups, Problems on mapping class groups and related topics (Proceedings of Symposia in Pure Mathematics), Volume 74, American Mathematical Society, 2006, pp. 301-316 | DOI | MR | Zbl

[12] Kenneth S. Brown Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI

[13] Jeff Cheeger; Mikhael Gromov L 2 -cohomology and group cohomology, Topology, Volume 25 (1986) no. 2, pp. 189-215 | DOI | MR | Zbl

[14] Clinton T. Conley; Damien Gaboriau; Andrew S. Marks; Robin D. Tucker-Drob One-ended spanning subforests and treeability of groups (2021) (https://arxiv.org/abs/2104.07431)

[15] Alain Connes Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978) (Lecture Notes in Mathematics), Volume 725, Springer, 1978, pp. 19-143 | DOI | Zbl

[16] Marc Culler; Karen Vogtmann Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | DOI | MR | Zbl

[17] Jacques Dixmier Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, XXV, Gauthier-Villars, 1969 | Numdam

[18] Jozef Dodziuk L 2 harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Am. Math. Soc., Volume 77 (1979), pp. 395-400 | MR | Zbl

[19] Beno Eckmann Introduction to 2 -methods in topology: reduced 2 -homology, harmonic chains, 2 -Betti numbers, Isr. J. Math., Volume 117 (2000), pp. 183-219 | DOI | Zbl

[20] Samuel Eilenberg; Tudor Ganea On the Lusternik–Schnirelmann category of abstract groups, Ann. Math., Volume 65 (1957), pp. 517-518 | DOI | MR | Zbl

[21] Damien Gaboriau Invariants 2 de relations d’équivalence et de groupes, Publ. Math., Volume 95 (2002), pp. 93-150 | DOI | Zbl

[22] Damien Gaboriau On the ergodic dimension (2022) (in preparation)

[23] Damien Gaboriau; Russell Lyons A measurable-group-theoretic solution to von Neumann’s problem, Invent. Math., Volume 177 (2009) no. 3, pp. 533-540 | DOI | MR | Zbl

[24] Edna K. Grossman On the residual finiteness of certain mapping class groups, J. Lond. Math. Soc., Volume 9 (1974), pp. 160-164 | DOI | MR | Zbl

[25] Allen E. Hatcher Homological stability for automorphism groups of free groups, Comment. Math. Helv., Volume 70 (1995) no. 1, pp. 39-62 | DOI | MR | Zbl

[26] Holger Kammeyer Introduction to 2 -invariants, Lecture Notes in Mathematics, 2247, Springer, 2019 | DOI | MR

[27] Yoshikata Kida The mapping class group from the viewpoint of measure equivalence theory, Memoirs of the American Mathematical Society, 916, American Mathematical Society, 2008, viii+190 pages | MR

[28] Bruce Kleiner; John Lott Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | DOI | MR | Zbl

[29] Hellmuth Kneser Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Dtsch. Math.-Ver., Volume 38 (1929), pp. 248-259

[30] John Lott; Wolfgang Lück L 2 -topological invariants of 3-manifolds, Invent. Math., Volume 120 (1995) no. 1, pp. 15-60 | DOI | MR | Zbl

[31] Wolfgang Lück Approximating L 2 -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | MR | Zbl

[32] Wolfgang Lück Dimension theory of arbitrary modules over finite von Neumann algebras and L 2 -Betti numbers. II. Applications to Grothendieck groups, L 2 -Euler characteristics and Burnside groups, J. Reine Angew. Math. (1998), pp. 213-236 | DOI | MR | Zbl

[33] Wolfgang Lück L 2 -invariants: theory and applications to geometry and K-theory, Theory and applications, 44, Springer, 2002

[34] Wilhelm Magnus Über n-dimensionale Gittertransformationen, Acta Math., Volume 64 (1935), pp. 353-367 | DOI | Zbl

[35] John W. Milnor A unique decomposition theorem for 3-manifolds, Am. J. Math., Volume 84 (1962), pp. 1-7 | DOI | MR | Zbl

[36] Jakob Nielsen Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR | Zbl

[37] Ryo Ohashi The rational homology group of Out (F n ) for n6, Exp. Math., Volume 17 (2008) no. 2, pp. 167-179 | DOI | MR | Zbl

[38] Donald S. Ornstein; Benjamin Weiss Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Am. Math. Soc., Volume 2 (1980) no. 1, pp. 161-164 | DOI | MR | Zbl

[39] Grisha Perelman The entropy formula for the Ricci flow and its geometric applications (2002) (https://arxiv.org/abs/math/0211159)

[40] Grisha Perelman Ricci flow with surgery on three-manifolds (2003) (https://arxiv.org/abs/math/0303109)

[41] Roman Sauer; Andreas Thom A spectral sequence to compute L 2 -Betti numbers of groups and groupoids, J. Lond. Math. Soc., Volume 81 (2010) no. 3, pp. 747-773 | DOI | MR | Zbl

[42] Jean-Pierre Serre Arbres, amalgames, SL 2 , Astérisque, 46, Société Mathématique de France, 1977

[43] Karen Vogtmann The cohomology of automorphism groups of free groups, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 1101-1117 | Zbl

Cité par Sources :