logo AFST
A local description of 2-dimensional almost minimal sets bounded by a curve
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 1, pp. 1-382.

On étudie la régularité locale des ensembles presque minimaux de dimension 2 dans n , bordés par une courbe lisse L, et avec une condition glissante de bord semblable à celle d’Almgren. Ces ensembles semblent le meilleur modèle pour les films de savon bordés par une courbe, mais les résultats de ce papier s’appliquent aussi à d’autres classes, plus petites, d’ensembles presque minimaux. Le but est d’obtenir une description locale de ces ensembles, en particulier près de L et modulo un difféomorphisme de classe C 1+ε . Dans ce papier on n’obtient une description complète que lorsque E est assez proche d’un demi plan, un plan ou une union de deux demi plans bordés par la même droite, ou un cône minimal de type 𝕐 ou 𝕋 transverse à L. Les outils principaux sont des formules de presque monotonie adaptées pour la densité, y compris pour des boules qui ne sont pas centrées sur L, et la construction du même genre de compétiteurs que pour la généralisation du résultat de J. Taylor sur la régularité loin du bord.

We study the local regularity of sliding almost minimal sets of dimension 2 in n , bounded by a smooth curve L. These are a good way to model soap films bounded by a curve, and their definition is similar to Almgren’s, but the results of this paper also hold for other, smaller classes of almost minimal sets. We aim for a local description, in particular near L and modulo C 1+ε diffeomorphisms, of such sets E, but in the present paper we only obtain a full description when E is close enough to a half plane, a plane or a union of two half planes bounded by the same line, or a transverse minimal cone of type 𝕐 or 𝕋. The main tools are adapted near monotonicity formulae for the density, including for balls that are not centered on L, and the same sort of construction of competitors as for the generalization of J. Taylor’s regularity result far from the boundary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1697
Classification : 49K99, 49Q20
Mots clés : Almost minimal sets, sliding boundary condition, Plateau problem
Guy David 1

1 Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2022_6_31_1_1_0,
     author = {Guy David},
     title = {A local description of 2-dimensional almost minimal sets bounded by a curve},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--382},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {1},
     year = {2022},
     doi = {10.5802/afst.1697},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1697/}
}
TY  - JOUR
AU  - Guy David
TI  - A local description of 2-dimensional almost minimal sets bounded by a curve
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1
EP  - 382
VL  - 31
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1697/
DO  - 10.5802/afst.1697
LA  - en
ID  - AFST_2022_6_31_1_1_0
ER  - 
%0 Journal Article
%A Guy David
%T A local description of 2-dimensional almost minimal sets bounded by a curve
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1-382
%V 31
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1697/
%R 10.5802/afst.1697
%G en
%F AFST_2022_6_31_1_1_0
Guy David. A local description of 2-dimensional almost minimal sets bounded by a curve. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 1, pp. 1-382. doi : 10.5802/afst.1697. https://afst.centre-mersenne.org/articles/10.5802/afst.1697/

[1] Frederick J. Almgren Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., Volume 87 (1968) no. 2, pp. 321-391 | DOI | MR | Zbl

[2] Frederick J. Almgren Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the American Mathematical Society, 4, American Mathematical Society, 1976, i+1999 pages

[3] Luigi Ambrosio; Nicola Fusco; Diego Pallara Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000, xviii+434 pages

[4] Marcel Berger Géométrie. Vol. 5 : La sphère pour elle-même, géométrie hyperbolique, l’espace des sphères, CEDIC/Fernand Nathan, 1977

[5] Kenneth A. Brakke Minimal surfaces, corners, and wires, J. Geom. Anal., Volume 2 (1992) no. 1, pp. 11-36 | DOI | MR | Zbl

[6] Edoardo Cavallotto Existence and regularity results for minimal surfaces; Plateau Problem, Ph. D. Thesis, Université Paris Sud (Orsay) (2018)

[7] Guy David Limits of Almgren-quasiminimal sets, Harmonic analysis at Mount Holyoke. Proceedings of the conference on Harmonic Analysis (Mount Holyoke College, 2001) (Contemporary Mathematics), Volume 320 (2003), pp. 119-145 | DOI | MR | Zbl

[8] Guy David Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics, 233, Birkhäuser, 2005, xiv+581 pages | Numdam

[9] Guy David Hölder regularity of two-dimensional Almost-minimal sets in n , Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 1, pp. 65-246 | DOI | Zbl

[10] Guy David C 1+a -regularity for two-dimensional almost-minimal sets in n , J. Geom. Anal., Volume 20 (2010) no. 4, pp. 837-954 | DOI | MR

[11] Guy David Regularity of minimal and almost minimal sets and cones: J. Taylor’s theorem for beginners, Analysis and geometry of metric measure spaces. Lecture notes of the 50th Séminaire de Mathématiques Supérieures (Montréal, 2011) (CRM Proceedings & Lecture Notes), Volume 56 (2011), pp. 67-117 | DOI | Zbl

[12] Guy David Should we solve Plateau’s problem again?, Advances in analysis (Princeton Mathematical Series), Volume 50, Princeton University Press, 2014, pp. 108-145 | DOI | MR | Zbl

[13] Guy David A monotonicity formula for minimal sets with a sliding boundary condition, Publ. Mat., Barc., Volume 60 (2016) no. 2, pp. 335-450 | DOI | MR

[14] Guy David Local regularity properties of almost- and quasiminimal sets with a sliding boundary condition, Astérisque, 411, Société Mathématique de France, 2019, x+337 pages | Numdam

[15] Guy David Sliding almost minimal sets and the Plateau problem, Harmonic analysis and applications (IAS/Park City Mathematics Series), Volume 7, American Mathematical Society; Institute for Advanced Study, 2020, pp. 199-256 | DOI | Zbl

[16] Guy David; Stephen Semmes Quasiminimal surfaces of codimension 1 and John domains, Pac. J. Math., Volume 183 (1998) no. 2, pp. 213-277 | DOI | MR | Zbl

[17] Guy David; Stephen Semmes Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the American Mathematical Society, 687, American Mathematical Society, 2000, viii+132 pages

[18] Camillo De Lellis; Guido De Philippis; Jonas Hirsch; Annalisa Massaccesi On the boundary behavior of mass-minimizing integral currents (2018) (https://arxiv.org/abs/1809.09457v1)

[19] Camillo De Lellis; Francesco Ghiraldin; Francesco Maggi A direct approach to Plateau’s problem, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2219-2240 | DOI | MR | Zbl

[20] Thierry De Pauw Size minimizing surfaces, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 1, pp. 37-101 | Numdam | MR | Zbl

[21] Guido De Philippis; Antonio De Rosa; Francesco Ghiraldin A direct approach to Plateau’s problem in any codimension, Adv. Math., Volume 288 (2016), pp. 59-80 | DOI | MR | Zbl

[22] Guido De Philippis; Antonio De Rosa; Francesco Ghiraldin Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies, Commun. Pure Appl. Math., Volume 71 (2016) no. 6, pp. 1123-1148 | DOI | MR | Zbl

[23] Guido De Philippis; Antonio De Rosa; Francesco Ghiraldin Existence results for minimizers of parametric elliptic functionals, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1450-1465 | DOI | MR | Zbl

[24] James Dugundji Topology, Series in Advanced Mathematics, Allyn and Bacon, 1966 | MR | Numdam

[25] Kenneth J. Falconer The geometry of fractal sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, 1985, xiv+162 pages | DOI

[26] Yangqin Fang Existence of Minimizers for the Reifenberg Plateau problem, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 3, pp. 817-844 | MR | Zbl

[27] Yangqin Fang Hölder regularity at the boundary of two-dimensional sliding almost-minimal sets, Adv. Calc. Var., Volume 11 (2018) no. 1, pp. 29-63 | DOI | MR | Zbl

[28] Yangqin Fang Local C 1,β -regularity at the boundary of two dimensional sliding almost minimal sets in 3 , Trans. Am. Math. Soc., Ser. B, Volume 8 (2021), pp. 130-189 | DOI | MR | Zbl

[29] Herbert Federer Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 1969, xiv+676 pages

[30] Enrico Giusti Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984, xii+240 pages | DOI | Numdam

[31] Jenny Harrison; Harrison Pugh Existence and soap film regularity of solutions to Plateau’s problem, Adv. Calc. Var., Volume 9 (2016) no. 4, pp. 357-394 | DOI | MR | Zbl

[32] Jenny Harrison; Harrison Pugh Solutions to the Reifenberg Plateau problem with cohomological spanning conditions, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 87, 37 pages | MR | Zbl

[33] Aladár Heppes Isogonal sphärischen netze, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 7 (1964), pp. 41-48

[34] E. Lamarle Sur la stabilité des systèmes liquides en lames minces, Mém. Acad. R. Belg., Volume 35 (1864), pp. 3-104

[35] Gary Lawlor Pairs of planes which are not size-minimizing, Indiana Univ. Math. J., Volume 43 (1994) no. 2, pp. 651-661 | DOI | MR | Zbl

[36] Gary Lawlor; Frank Morgan Curvy slicing proves that triple junctions locally minimize area, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 514-528 | MR | Zbl

[37] Xiangyu Liang Almgren-minimality of unions of two almost orthogonal planes in 4 , Proc. Lond. Math. Soc., Volume 106 (2013) no. 5, pp. 1005-1059 | DOI | MR | Zbl

[38] Xiangyu Liang Almgren and topological minimality for the set Y×Y, J. Funct. Anal., Volume 266 (2014) no. 10, pp. 6007-6054 | DOI | MR | Zbl

[39] Xiangyu Liang On the topological minimality of unions of planes of arbitrary dimension, Int. Math. Res. Not., Volume 2015 (2015) no. 23, pp. 12490-12539 | MR | Zbl

[40] Tien Duc Luu On some properties of three-dimensional minimal sets in 4 , Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 3, pp. 465-493 | MR | Zbl

[41] Pertti Mattila Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995, xii+343 pages | DOI

[42] Frank Morgan Soap films and mathematics, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) (Proceedings of Symposia in Pure Mathematics), Volume 54, American Mathematical Society, 1990, pp. 375-380 | Zbl

[43] Frank Morgan Geometric measure theory. A beginner’s guide, Academic Press Inc., 2009, viii+249 pages

[44] Maxwell H. A. Newman Elements of the topology of plane sets of points, Cambridge University Press, 1961 (second ed., reprinted)

[45] Ernst R. Reifenberg Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math., Volume 104 (1960), pp. 1-92 | DOI | MR | Zbl

[46] Elias M. Stein Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages

[47] Jean Taylor The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math., Volume 103 (1976) no. 3, pp. 489-539 | DOI | MR | Zbl

[48] Jean Taylor Boundary regularity for solutions to various capillarity and free boundary problems, Commun. Partial Differ. Equations, Volume 2 (1977) no. 4, pp. 323-357 | DOI | MR | Zbl

Cité par Sources :