We study the local regularity of sliding almost minimal sets of dimension in , bounded by a smooth curve . These are a good way to model soap films bounded by a curve, and their definition is similar to Almgren’s, but the results of this paper also hold for other, smaller classes of almost minimal sets. We aim for a local description, in particular near and modulo diffeomorphisms, of such sets , but in the present paper we only obtain a full description when is close enough to a half plane, a plane or a union of two half planes bounded by the same line, or a transverse minimal cone of type or . The main tools are adapted near monotonicity formulae for the density, including for balls that are not centered on , and the same sort of construction of competitors as for the generalization of J. Taylor’s regularity result far from the boundary.
On étudie la régularité locale des ensembles presque minimaux de dimension dans , bordés par une courbe lisse , et avec une condition glissante de bord semblable à celle d’Almgren. Ces ensembles semblent le meilleur modèle pour les films de savon bordés par une courbe, mais les résultats de ce papier s’appliquent aussi à d’autres classes, plus petites, d’ensembles presque minimaux. Le but est d’obtenir une description locale de ces ensembles, en particulier près de et modulo un difféomorphisme de classe . Dans ce papier on n’obtient une description complète que lorsque est assez proche d’un demi plan, un plan ou une union de deux demi plans bordés par la même droite, ou un cône minimal de type ou transverse à . Les outils principaux sont des formules de presque monotonie adaptées pour la densité, y compris pour des boules qui ne sont pas centrées sur , et la construction du même genre de compétiteurs que pour la généralisation du résultat de J. Taylor sur la régularité loin du bord.
Accepted:
Published online:
Keywords: Almost minimal sets, sliding boundary condition, Plateau problem
Guy David 1

@article{AFST_2022_6_31_1_1_0, author = {Guy David}, title = {A local description of 2-dimensional almost minimal sets bounded by a curve}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1--382}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {1}, year = {2022}, doi = {10.5802/afst.1697}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1697/} }
TY - JOUR AU - Guy David TI - A local description of 2-dimensional almost minimal sets bounded by a curve JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1 EP - 382 VL - 31 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1697/ DO - 10.5802/afst.1697 LA - en ID - AFST_2022_6_31_1_1_0 ER -
%0 Journal Article %A Guy David %T A local description of 2-dimensional almost minimal sets bounded by a curve %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1-382 %V 31 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1697/ %R 10.5802/afst.1697 %G en %F AFST_2022_6_31_1_1_0
Guy David. A local description of 2-dimensional almost minimal sets bounded by a curve. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 1, pp. 1-382. doi : 10.5802/afst.1697. https://afst.centre-mersenne.org/articles/10.5802/afst.1697/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., Volume 87 (1968) no. 2, pp. 321-391 | DOI | MR | Zbl
[2] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs of the American Mathematical Society, 4, American Mathematical Society, 1976, i+1999 pages
[3] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000, xviii+434 pages
[4] Géométrie. Vol. 5 : La sphère pour elle-même, géométrie hyperbolique, l’espace des sphères, CEDIC/Fernand Nathan, 1977
[5] Minimal surfaces, corners, and wires, J. Geom. Anal., Volume 2 (1992) no. 1, pp. 11-36 | DOI | MR | Zbl
[6] Existence and regularity results for minimal surfaces; Plateau Problem, Ph. D. Thesis, Université Paris Sud (Orsay) (2018)
[7] Limits of Almgren-quasiminimal sets, Harmonic analysis at Mount Holyoke. Proceedings of the conference on Harmonic Analysis (Mount Holyoke College, 2001) (Contemporary Mathematics), Volume 320 (2003), pp. 119-145 | DOI | MR | Zbl
[8] Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics, 233, Birkhäuser, 2005, xiv+581 pages | Numdam
[9] Hölder regularity of two-dimensional Almost-minimal sets in , Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 1, pp. 65-246 | DOI | Zbl
[10] -regularity for two-dimensional almost-minimal sets in , J. Geom. Anal., Volume 20 (2010) no. 4, pp. 837-954 | DOI | MR
[11] Regularity of minimal and almost minimal sets and cones: J. Taylor’s theorem for beginners, Analysis and geometry of metric measure spaces. Lecture notes of the 50th Séminaire de Mathématiques Supérieures (Montréal, 2011) (CRM Proceedings & Lecture Notes), Volume 56 (2011), pp. 67-117 | DOI | Zbl
[12] Should we solve Plateau’s problem again?, Advances in analysis (Princeton Mathematical Series), Volume 50, Princeton University Press, 2014, pp. 108-145 | DOI | MR | Zbl
[13] A monotonicity formula for minimal sets with a sliding boundary condition, Publ. Mat., Barc., Volume 60 (2016) no. 2, pp. 335-450 | DOI | MR
[14] Local regularity properties of almost- and quasiminimal sets with a sliding boundary condition, Astérisque, 411, Société Mathématique de France, 2019, x+337 pages | Numdam
[15] Sliding almost minimal sets and the Plateau problem, Harmonic analysis and applications (IAS/Park City Mathematics Series), Volume 7, American Mathematical Society; Institute for Advanced Study, 2020, pp. 199-256 | DOI | Zbl
[16] Quasiminimal surfaces of codimension 1 and John domains, Pac. J. Math., Volume 183 (1998) no. 2, pp. 213-277 | DOI | MR | Zbl
[17] Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the American Mathematical Society, 687, American Mathematical Society, 2000, viii+132 pages
[18] On the boundary behavior of mass-minimizing integral currents (2018) (https://arxiv.org/abs/1809.09457v1)
[19] A direct approach to Plateau’s problem, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2219-2240 | DOI | MR | Zbl
[20] Size minimizing surfaces, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 1, pp. 37-101 | Numdam | MR | Zbl
[21] A direct approach to Plateau’s problem in any codimension, Adv. Math., Volume 288 (2016), pp. 59-80 | DOI | MR | Zbl
[22] Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies, Commun. Pure Appl. Math., Volume 71 (2016) no. 6, pp. 1123-1148 | DOI | MR | Zbl
[23] Existence results for minimizers of parametric elliptic functionals, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1450-1465 | DOI | MR | Zbl
[24] Topology, Series in Advanced Mathematics, Allyn and Bacon, 1966 | MR | Numdam
[25] The geometry of fractal sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, 1985, xiv+162 pages | DOI
[26] Existence of Minimizers for the Reifenberg Plateau problem, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 3, pp. 817-844 | MR | Zbl
[27] Hölder regularity at the boundary of two-dimensional sliding almost-minimal sets, Adv. Calc. Var., Volume 11 (2018) no. 1, pp. 29-63 | DOI | MR | Zbl
[28] Local -regularity at the boundary of two dimensional sliding almost minimal sets in , Trans. Am. Math. Soc., Ser. B, Volume 8 (2021), pp. 130-189 | DOI | MR | Zbl
[29] Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 1969, xiv+676 pages
[30] Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984, xii+240 pages | DOI | Numdam
[31] Existence and soap film regularity of solutions to Plateau’s problem, Adv. Calc. Var., Volume 9 (2016) no. 4, pp. 357-394 | DOI | MR | Zbl
[32] Solutions to the Reifenberg Plateau problem with cohomological spanning conditions, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 87, 37 pages | MR | Zbl
[33] Isogonal sphärischen netze, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 7 (1964), pp. 41-48
[34] Sur la stabilité des systèmes liquides en lames minces, Mém. Acad. R. Belg., Volume 35 (1864), pp. 3-104
[35] Pairs of planes which are not size-minimizing, Indiana Univ. Math. J., Volume 43 (1994) no. 2, pp. 651-661 | DOI | MR | Zbl
[36] Curvy slicing proves that triple junctions locally minimize area, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 514-528 | MR | Zbl
[37] Almgren-minimality of unions of two almost orthogonal planes in , Proc. Lond. Math. Soc., Volume 106 (2013) no. 5, pp. 1005-1059 | DOI | MR | Zbl
[38] Almgren and topological minimality for the set , J. Funct. Anal., Volume 266 (2014) no. 10, pp. 6007-6054 | DOI | MR | Zbl
[39] On the topological minimality of unions of planes of arbitrary dimension, Int. Math. Res. Not., Volume 2015 (2015) no. 23, pp. 12490-12539 | MR | Zbl
[40] On some properties of three-dimensional minimal sets in , Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 3, pp. 465-493 | MR | Zbl
[41] Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995, xii+343 pages | DOI
[42] Soap films and mathematics, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) (Proceedings of Symposia in Pure Mathematics), Volume 54, American Mathematical Society, 1990, pp. 375-380 | Zbl
[43] Geometric measure theory. A beginner’s guide, Academic Press Inc., 2009, viii+249 pages
[44] Elements of the topology of plane sets of points, Cambridge University Press, 1961 (second ed., reprinted)
[45] Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math., Volume 104 (1960), pp. 1-92 | DOI | MR | Zbl
[46] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages
[47] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math., Volume 103 (1976) no. 3, pp. 489-539 | DOI | MR | Zbl
[48] Boundary regularity for solutions to various capillarity and free boundary problems, Commun. Partial Differ. Equations, Volume 2 (1977) no. 4, pp. 323-357 | DOI | MR | Zbl
Cited by Sources: