We study in this paper the non-relativistic limit from Vlasov–Maxwell to Vlasov–Poisson, which corresponds to the regime where the speed of light is large compared to the typical velocities of particles. In contrast with [4, 14, 43] which handle the case of classical solutions, we consider measure-valued solutions, whose moments and electromagnetic field are assumed to satisfy some uniform bounds. To this end, we use a functional inspired by the one introduced by Loeper in his proof of uniqueness for the Vlasov–Poisson system [33]. We also build a special class of measure-valued solutions, that enjoy no higher regularity with respect to the momentum variable, but whose moments and electromagnetic fields satisfy all required conditions to enter our framework.
Nous étudions dans cet article la limite non-relativiste de Vlasov–Maxwell vers Vlasov–Poisson, ce qui correspond au régime où la vitesse de la lumière est grande par rapport à la vitesse typique des particles. Contrairement à [4, 14, 43] qui traitent le cas de solutions classiques, nous considérons des solutions à valeurs dans les mesures, dont les moments et champ électro-magnétique sont supposés satisfaire certaines bornes uniformes. À cette fin, nous utilisons une fonctionnelle inspirée par celle introduite par Loeper dans sa preuve d’unicité pour le système de Vlasov–Poisson [33]. Nous construisons également une classe particulière de solutions à valeurs dans les mesures, qui ne sont pas lisses par rapport à la variable de moment, mais dont les moments et champ électro-magnétique satisfont toutes les conditions requises pour entrer dans notre cadre de travail.
Accepted:
Published online:
DOI: 10.5802/afst.1702
Keywords: Vlasov–Maxwell, Vlasov–Poisson, Non-relativistic limit
Keywords: Vlasov–Maxwell, Vlasov–Poisson, Limite non-relativiste
Nicolas Brigouleix 1; Daniel Han-Kwan 1
@article{AFST_2022_6_31_2_545_0, author = {Nicolas Brigouleix and Daniel Han-Kwan}, title = {The non-relativistic limit of the {Vlasov{\textendash}Maxwell} system with uniform macroscopic bounds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {545--594}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {2}, year = {2022}, doi = {10.5802/afst.1702}, zbl = {07549948}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1702/} }
TY - JOUR AU - Nicolas Brigouleix AU - Daniel Han-Kwan TI - The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 545 EP - 594 VL - 31 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1702/ DO - 10.5802/afst.1702 LA - en ID - AFST_2022_6_31_2_545_0 ER -
%0 Journal Article %A Nicolas Brigouleix %A Daniel Han-Kwan %T The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 545-594 %V 31 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1702/ %R 10.5802/afst.1702 %G en %F AFST_2022_6_31_2_545_0
Nicolas Brigouleix; Daniel Han-Kwan. The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 2, pp. 545-594. doi : 10.5802/afst.1702. https://afst.centre-mersenne.org/articles/10.5802/afst.1702/
[1] Transport equation and Cauchy problem for vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260 | DOI | MR | Zbl
[2] Existence in the large of a weak solution of Vlasov’s system of equations, Zh. Vychisl. Mat. Mat. Fiz., Volume 15 (1975), p. 136-147, 276 | MR
[3] On local solutions of the initial value problem for the Vlasov-Maxwell equation, Commun. Math. Phys., Volume 106 (1986) no. 4, pp. 551-568 http://projecteuclid.org/euclid.cmp/1104115851 | DOI | MR | Zbl
[4] On the Vlasov-Poisson limit of the Vlasov-Maxwell equation, Patterns and waves (Studies in Mathematics and its Applications), Volume 18, North-Holland, 1986, pp. 369-383 | DOI | MR | Zbl
[5] Nonlinear instability in Vlasov type equations around rough velocity profiles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 3, pp. 489-547 | DOI | MR | Zbl
[6] Global existence for the Vlasov–Poisson equation in space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | Numdam | MR | Zbl
[7] Global classical solutions of the periodic Vlasov–Poisson system in three dimensions, C. R. Math. Acad. Sci. Paris, Volume 313 (1991) no. 1, pp. 411-416 | MR | Zbl
[8] Sharp asymptotic behavior of solutions of the 3d-Vlasov–Maxwell system with small data (2018) | arXiv
[9] Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 1, pp. 1-15 | DOI | MR | Zbl
[10] Kinetic equations and asymptotic theory (Benoît Perthame; Laurent Desvillettes, eds.), Series in Applied Mathematics, Gauthier-Villars/Elsevier, 2000, 162 pages
[11] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl
[12] A simplified version of the abstract Cauchy–Kowalewski theorem with weak singularities, Bull. Am. Math. Soc., Volume 23 (1990) no. 2, pp. 495-500 | DOI | MR | Zbl
[13] The non-relativistic limit of the Nordström–Vlasov system, Commun. Math. Sci., Volume 2 (2004) no. 1, pp. 19-34 http://projecteuclid.org/euclid.cms/1250880207 | DOI | MR | Zbl
[14] Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity, Math. Methods Appl. Sci., Volume 8 (1986) no. 4, pp. 533-558 | DOI | MR | Zbl
[15] Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757 | DOI | MR | Zbl
[16] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR
[17] Vlasov equations, Funkts. Anal. Prilozh., Volume 13 (1979) no. 2, p. 48-58, 96 | MR
[18] The geometry of optimal transportation, Acta Math., Volume 177 (1996) no. 2, pp. 113-161 | DOI | MR | Zbl
[19] The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | DOI | MR
[20] Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 http://projecteuclid.org/euclid.cmp/1104162494 | DOI | MR | Zbl
[21] Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal., Volume 92 (1986) no. 1, pp. 59-90 | DOI | MR | Zbl
[22] Oscillations in quasineutral plasmas, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 363-394 | DOI | MR | Zbl
[23] Generator functions and their applications (2019) | arXiv
[24] Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension, J. Differ. Equations, Volume 263 (2017) no. 1, pp. 1-25 | DOI | MR | Zbl
[25] The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric, Commun. Math. Sci., Volume 15 (2017) no. 2, pp. 481-509 | DOI | MR | Zbl
[26] Nonlinear instability of Vlasov–Maxwell systems in the classical and quasineutral limits, SIAM J. Math. Anal., Volume 48 (2016) no. 5, pp. 3444-3466 | DOI | MR | Zbl
[27] Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit, Commun. Math. Phys., Volume 363 (2018) no. 2, pp. 389-434 | DOI | MR | Zbl
[28] Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces, Mathematical analysis in fluid mechanics—selected recent results (Contemporary Mathematics), Volume 710, American Mathematical Society, 2018, pp. 145-162 | DOI | MR | Zbl
[29] A new approach to study the Vlasov–Maxwell system, Commun. Pure Appl. Anal., Volume 1 (2002) no. 1, pp. 103-125 | DOI | MR | Zbl
[30] Cours de physique théorique. II, Théorie des champs, Editions Mir, 1970
[31] The classical limit of the relativistic Vlasov–Maxwell system in two space dimensions, Math. Methods Appl. Sci., Volume 27 (2004) no. 3, pp. 249-287 | DOI | MR | Zbl
[32] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR
[33] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006) no. 1, pp. 68-79 | DOI | MR | Zbl
[34] A new continuation criterion for the relativistic Vlasov-Maxwell system, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1005-1027 | MR | Zbl
[35] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002, xii+545 pages
[36] A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | MR | Zbl
[37] A lower bound for the life span of solutions to relativistic Vlasov–Maxwell systems, Asymptotic Anal., Volume 56 (2008) no. 3-4, pp. 205-228 | MR | Zbl
[38] Moment Propagation for Weak Solutions to the Vlasov–Poisson System, Commun. Partial Differ. Equations, Volume 37 (2012) no. 7, pp. 1273-1285 | DOI | MR | Zbl
[39] Space moments of the Vlasov–Poisson system: propagation and regularity, SIAM J. Math. Anal., Volume 46 (2014) no. 3, pp. 1754-1770 | DOI | MR | Zbl
[40] A refined existence criterion for the relativistic Vlasov–Maxwell system, Commun. Math. Sci., Volume 13 (2015) no. 2, pp. 347-354 | DOI | MR | Zbl
[41] Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992), pp. 281-303 | DOI | MR | Zbl
[42] Unicité de la solution faible à support compact de l’équation de Vlasov–Poisson, C. R. Math. Acad. Sci. Paris, Volume 324 (1997) no. 8, pp. 873-877 | DOI | MR | Zbl
[43] The classical limit of the relativistic Vlasov–Maxwell system, Commun. Math. Phys., Volume 104 (1986) no. 3, pp. 403-421 http://projecteuclid.org/euclid.cmp/1104115084 | DOI | MR | Zbl
[44] Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1313-1335 | DOI | MR | Zbl
[45] A small data theorem for collisionless plasma that includes high velocity particles, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 1-34 | DOI | MR | Zbl
[46] The nonrelativistic limit of the relativistic Vlasov–Maxwell system, Math. Methods Appl. Sci., Volume 40 (2017) no. 3, pp. 3784-3798 | DOI | MR | Zbl
[47] On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. Math., Volume 15 (1978) no. 2, pp. 245-261 http://projecteuclid.org/euclid.ojm/1200771271 | MR | Zbl
[48] Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003, xvi+370 pages | DOI | MR
[49] An existence and uniqueness theorem for the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume 37 (1984) no. 4, pp. 457-462 | DOI | MR | Zbl
Cited by Sources: