Nous étudions dans cet article la limite non-relativiste de Vlasov–Maxwell vers Vlasov–Poisson, ce qui correspond au régime où la vitesse de la lumière est grande par rapport à la vitesse typique des particles. Contrairement à [4, 14, 43] qui traitent le cas de solutions classiques, nous considérons des solutions à valeurs dans les mesures, dont les moments et champ électro-magnétique sont supposés satisfaire certaines bornes uniformes. À cette fin, nous utilisons une fonctionnelle inspirée par celle introduite par Loeper dans sa preuve d’unicité pour le système de Vlasov–Poisson [33]. Nous construisons également une classe particulière de solutions à valeurs dans les mesures, qui ne sont pas lisses par rapport à la variable de moment, mais dont les moments et champ électro-magnétique satisfont toutes les conditions requises pour entrer dans notre cadre de travail.
We study in this paper the non-relativistic limit from Vlasov–Maxwell to Vlasov–Poisson, which corresponds to the regime where the speed of light is large compared to the typical velocities of particles. In contrast with [4, 14, 43] which handle the case of classical solutions, we consider measure-valued solutions, whose moments and electromagnetic field are assumed to satisfy some uniform bounds. To this end, we use a functional inspired by the one introduced by Loeper in his proof of uniqueness for the Vlasov–Poisson system [33]. We also build a special class of measure-valued solutions, that enjoy no higher regularity with respect to the momentum variable, but whose moments and electromagnetic fields satisfy all required conditions to enter our framework.
Accepté le :
Publié le :
DOI : 10.5802/afst.1702
Keywords: Vlasov–Maxwell, Vlasov–Poisson, Non-relativistic limit
Mots-clés : Vlasov–Maxwell, Vlasov–Poisson, Limite non-relativiste
Nicolas Brigouleix 1 ; Daniel Han-Kwan 1

@article{AFST_2022_6_31_2_545_0, author = {Nicolas Brigouleix and Daniel Han-Kwan}, title = {The non-relativistic limit of the {Vlasov{\textendash}Maxwell} system with uniform macroscopic bounds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {545--594}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {2}, year = {2022}, doi = {10.5802/afst.1702}, zbl = {07549948}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1702/} }
TY - JOUR AU - Nicolas Brigouleix AU - Daniel Han-Kwan TI - The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 545 EP - 594 VL - 31 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1702/ DO - 10.5802/afst.1702 LA - en ID - AFST_2022_6_31_2_545_0 ER -
%0 Journal Article %A Nicolas Brigouleix %A Daniel Han-Kwan %T The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 545-594 %V 31 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1702/ %R 10.5802/afst.1702 %G en %F AFST_2022_6_31_2_545_0
Nicolas Brigouleix; Daniel Han-Kwan. The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 2, pp. 545-594. doi : 10.5802/afst.1702. https://afst.centre-mersenne.org/articles/10.5802/afst.1702/
[1] Transport equation and Cauchy problem for vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260 | DOI | MR | Zbl
[2] Existence in the large of a weak solution of Vlasov’s system of equations, Zh. Vychisl. Mat. Mat. Fiz., Volume 15 (1975), p. 136-147, 276 | MR
[3] On local solutions of the initial value problem for the Vlasov-Maxwell equation, Commun. Math. Phys., Volume 106 (1986) no. 4, pp. 551-568 http://projecteuclid.org/euclid.cmp/1104115851 | DOI | MR | Zbl
[4] On the Vlasov-Poisson limit of the Vlasov-Maxwell equation, Patterns and waves (Studies in Mathematics and its Applications), Volume 18, North-Holland, 1986, pp. 369-383 | DOI | MR | Zbl
[5] Nonlinear instability in Vlasov type equations around rough velocity profiles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 3, pp. 489-547 | DOI | MR | Zbl
[6] Global existence for the Vlasov–Poisson equation in space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | Numdam | MR | Zbl
[7] Global classical solutions of the periodic Vlasov–Poisson system in three dimensions, C. R. Math. Acad. Sci. Paris, Volume 313 (1991) no. 1, pp. 411-416 | MR | Zbl
[8] Sharp asymptotic behavior of solutions of the 3d-Vlasov–Maxwell system with small data (2018) | arXiv
[9] Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 1, pp. 1-15 | DOI | MR | Zbl
[10] Kinetic equations and asymptotic theory (Benoît Perthame; Laurent Desvillettes, eds.), Series in Applied Mathematics, Gauthier-Villars/Elsevier, 2000, 162 pages
[11] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl
[12] A simplified version of the abstract Cauchy–Kowalewski theorem with weak singularities, Bull. Am. Math. Soc., Volume 23 (1990) no. 2, pp. 495-500 | DOI | MR | Zbl
[13] The non-relativistic limit of the Nordström–Vlasov system, Commun. Math. Sci., Volume 2 (2004) no. 1, pp. 19-34 http://projecteuclid.org/euclid.cms/1250880207 | DOI | MR | Zbl
[14] Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity, Math. Methods Appl. Sci., Volume 8 (1986) no. 4, pp. 533-558 | DOI | MR | Zbl
[15] Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757 | DOI | MR | Zbl
[16] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR
[17] Vlasov equations, Funkts. Anal. Prilozh., Volume 13 (1979) no. 2, p. 48-58, 96 | MR
[18] The geometry of optimal transportation, Acta Math., Volume 177 (1996) no. 2, pp. 113-161 | DOI | MR | Zbl
[19] The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | DOI | MR
[20] Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 http://projecteuclid.org/euclid.cmp/1104162494 | DOI | MR | Zbl
[21] Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal., Volume 92 (1986) no. 1, pp. 59-90 | DOI | MR | Zbl
[22] Oscillations in quasineutral plasmas, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 363-394 | DOI | MR | Zbl
[23] Generator functions and their applications (2019) | arXiv
[24] Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension, J. Differ. Equations, Volume 263 (2017) no. 1, pp. 1-25 | DOI | MR | Zbl
[25] The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric, Commun. Math. Sci., Volume 15 (2017) no. 2, pp. 481-509 | DOI | MR | Zbl
[26] Nonlinear instability of Vlasov–Maxwell systems in the classical and quasineutral limits, SIAM J. Math. Anal., Volume 48 (2016) no. 5, pp. 3444-3466 | DOI | MR | Zbl
[27] Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit, Commun. Math. Phys., Volume 363 (2018) no. 2, pp. 389-434 | DOI | MR | Zbl
[28] Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces, Mathematical analysis in fluid mechanics—selected recent results (Contemporary Mathematics), Volume 710, American Mathematical Society, 2018, pp. 145-162 | DOI | MR | Zbl
[29] A new approach to study the Vlasov–Maxwell system, Commun. Pure Appl. Anal., Volume 1 (2002) no. 1, pp. 103-125 | DOI | MR | Zbl
[30] Cours de physique théorique. II, Théorie des champs, Editions Mir, 1970
[31] The classical limit of the relativistic Vlasov–Maxwell system in two space dimensions, Math. Methods Appl. Sci., Volume 27 (2004) no. 3, pp. 249-287 | DOI | MR | Zbl
[32] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR
[33] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006) no. 1, pp. 68-79 | DOI | MR | Zbl
[34] A new continuation criterion for the relativistic Vlasov-Maxwell system, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1005-1027 | MR | Zbl
[35] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002, xii+545 pages
[36] A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | MR | Zbl
[37] A lower bound for the life span of solutions to relativistic Vlasov–Maxwell systems, Asymptotic Anal., Volume 56 (2008) no. 3-4, pp. 205-228 | MR | Zbl
[38] Moment Propagation for Weak Solutions to the Vlasov–Poisson System, Commun. Partial Differ. Equations, Volume 37 (2012) no. 7, pp. 1273-1285 | DOI | MR | Zbl
[39] Space moments of the Vlasov–Poisson system: propagation and regularity, SIAM J. Math. Anal., Volume 46 (2014) no. 3, pp. 1754-1770 | DOI | MR | Zbl
[40] A refined existence criterion for the relativistic Vlasov–Maxwell system, Commun. Math. Sci., Volume 13 (2015) no. 2, pp. 347-354 | DOI | MR | Zbl
[41] Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992), pp. 281-303 | DOI | MR | Zbl
[42] Unicité de la solution faible à support compact de l’équation de Vlasov–Poisson, C. R. Math. Acad. Sci. Paris, Volume 324 (1997) no. 8, pp. 873-877 | DOI | MR | Zbl
[43] The classical limit of the relativistic Vlasov–Maxwell system, Commun. Math. Phys., Volume 104 (1986) no. 3, pp. 403-421 http://projecteuclid.org/euclid.cmp/1104115084 | DOI | MR | Zbl
[44] Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1313-1335 | DOI | MR | Zbl
[45] A small data theorem for collisionless plasma that includes high velocity particles, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 1-34 | DOI | MR | Zbl
[46] The nonrelativistic limit of the relativistic Vlasov–Maxwell system, Math. Methods Appl. Sci., Volume 40 (2017) no. 3, pp. 3784-3798 | DOI | MR | Zbl
[47] On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. Math., Volume 15 (1978) no. 2, pp. 245-261 http://projecteuclid.org/euclid.ojm/1200771271 | MR | Zbl
[48] Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003, xvi+370 pages | DOI | MR
[49] An existence and uniqueness theorem for the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume 37 (1984) no. 4, pp. 457-462 | DOI | MR | Zbl
Cité par Sources :