logo AFST
The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 2, pp. 545-594.

Nous étudions dans cet article la limite non-relativiste de Vlasov–Maxwell vers Vlasov–Poisson, ce qui correspond au régime où la vitesse de la lumière est grande par rapport à la vitesse typique des particles. Contrairement à [4, 14, 43] qui traitent le cas de solutions classiques, nous considérons des solutions à valeurs dans les mesures, dont les moments et champ électro-magnétique sont supposés satisfaire certaines bornes uniformes. À cette fin, nous utilisons une fonctionnelle inspirée par celle introduite par Loeper dans sa preuve d’unicité pour le système de Vlasov–Poisson [33]. Nous construisons également une classe particulière de solutions à valeurs dans les mesures, qui ne sont pas lisses par rapport à la variable de moment, mais dont les moments et champ électro-magnétique satisfont toutes les conditions requises pour entrer dans notre cadre de travail.

We study in this paper the non-relativistic limit from Vlasov–Maxwell to Vlasov–Poisson, which corresponds to the regime where the speed of light is large compared to the typical velocities of particles. In contrast with [4, 14, 43] which handle the case of classical solutions, we consider measure-valued solutions, whose moments and electromagnetic field are assumed to satisfy some uniform bounds. To this end, we use a functional inspired by the one introduced by Loeper in his proof of uniqueness for the Vlasov–Poisson system [33]. We also build a special class of measure-valued solutions, that enjoy no higher regularity with respect to the momentum variable, but whose moments and electromagnetic fields satisfy all required conditions to enter our framework.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1702
Classification : 35Q83, 35B40, 35Q61
Keywords: Vlasov–Maxwell, Vlasov–Poisson, Non-relativistic limit
Mots clés : Vlasov–Maxwell, Vlasov–Poisson, Limite non-relativiste
Nicolas Brigouleix 1 ; Daniel Han-Kwan 1

1 CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2022_6_31_2_545_0,
     author = {Nicolas Brigouleix and Daniel Han-Kwan},
     title = {The non-relativistic limit of the {Vlasov{\textendash}Maxwell} system with uniform macroscopic bounds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {545--594},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {2},
     year = {2022},
     doi = {10.5802/afst.1702},
     zbl = {07549948},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1702/}
}
TY  - JOUR
AU  - Nicolas Brigouleix
AU  - Daniel Han-Kwan
TI  - The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 545
EP  - 594
VL  - 31
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1702/
DO  - 10.5802/afst.1702
LA  - en
ID  - AFST_2022_6_31_2_545_0
ER  - 
%0 Journal Article
%A Nicolas Brigouleix
%A Daniel Han-Kwan
%T The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 545-594
%V 31
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1702/
%R 10.5802/afst.1702
%G en
%F AFST_2022_6_31_2_545_0
Nicolas Brigouleix; Daniel Han-Kwan. The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 2, pp. 545-594. doi : 10.5802/afst.1702. https://afst.centre-mersenne.org/articles/10.5802/afst.1702/

[1] Luigi Ambrosio Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260 | DOI | MR | Zbl

[2] Alekseĭ A. Arsenev Existence in the large of a weak solution of Vlasov’s system of equations, Zh. Vychisl. Mat. Mat. Fiz., Volume 15 (1975), p. 136-147, 276 | MR

[3] Kiyoshi Asano On local solutions of the initial value problem for the Vlasov-Maxwell equation, Commun. Math. Phys., Volume 106 (1986) no. 4, pp. 551-568 http://projecteuclid.org/euclid.cmp/1104115851 | DOI | MR | Zbl

[4] Kiyoshi Asano; Seiji Ukai On the Vlasov-Poisson limit of the Vlasov-Maxwell equation, Patterns and waves (Studies in Mathematics and its Applications), Volume 18, North-Holland, 1986, pp. 369-383 | DOI | MR | Zbl

[5] Aymeric Baradat Nonlinear instability in Vlasov type equations around rough velocity profiles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 3, pp. 489-547 | DOI | MR | Zbl

[6] Claude Bardos; Pierre Degond Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | Numdam | MR | Zbl

[7] Jürgen Batt; Gerhard Rein Global classical solutions of the periodic Vlasov–Poisson system in three dimensions, C. R. Math. Acad. Sci. Paris, Volume 313 (1991) no. 1, pp. 411-416 | MR | Zbl

[8] Léo Bigorgne Sharp asymptotic behavior of solutions of the 3d-Vlasov–Maxwell system with small data (2018) | arXiv

[9] François Bouchut; François Golse; Christophe Pallard Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 1, pp. 1-15 | DOI | MR | Zbl

[10] François Bouchut; François Golse; Mario Pulvirenti Kinetic equations and asymptotic theory (Benoît Perthame; Laurent Desvillettes, eds.), Series in Applied Mathematics, Gauthier-Villars/Elsevier, 2000, 162 pages

[11] Yann Brenier Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417 | DOI | MR | Zbl

[12] Russel E. Caflisch A simplified version of the abstract Cauchy–Kowalewski theorem with weak singularities, Bull. Am. Math. Soc., Volume 23 (1990) no. 2, pp. 495-500 | DOI | MR | Zbl

[13] Simone Calogero; Hayoung Lee The non-relativistic limit of the Nordström–Vlasov system, Commun. Math. Sci., Volume 2 (2004) no. 1, pp. 19-34 http://projecteuclid.org/euclid.cms/1250880207 | DOI | MR | Zbl

[14] Pierre Degond Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity, Math. Methods Appl. Sci., Volume 8 (1986) no. 4, pp. 533-558 | DOI | MR | Zbl

[15] Ronald J. DiPerna; Pierre-Louis Lions Global weak solutions of Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 729-757 | DOI | MR | Zbl

[16] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR

[17] Roland L. Dobrušin Vlasov equations, Funkts. Anal. Prilozh., Volume 13 (1979) no. 2, p. 48-58, 96 | MR

[18] Wilfrid Gangbo; Robert J. McCann The geometry of optimal transportation, Acta Math., Volume 177 (1996) no. 2, pp. 113-161 | DOI | MR | Zbl

[19] Robert T. Glassey The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics, 1996, xii+241 pages | DOI | MR

[20] Robert T. Glassey; Jack W. Schaeffer Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 http://projecteuclid.org/euclid.cmp/1104162494 | DOI | MR | Zbl

[21] Robert T. Glassey; Walter A. Strauss Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal., Volume 92 (1986) no. 1, pp. 59-90 | DOI | MR | Zbl

[22] Emmanuel Grenier Oscillations in quasineutral plasmas, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 363-394 | DOI | MR | Zbl

[23] Emmanuel Grenier; Toan T. Nguyen Generator functions and their applications (2019) | arXiv

[24] Daniel Han-Kwan; Mikaela Iacobelli Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension, J. Differ. Equations, Volume 263 (2017) no. 1, pp. 1-25 | DOI | MR | Zbl

[25] Daniel Han-Kwan; Mikaela Iacobelli The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric, Commun. Math. Sci., Volume 15 (2017) no. 2, pp. 481-509 | DOI | MR | Zbl

[26] Daniel Han-Kwan; Toan T. Nguyen Nonlinear instability of Vlasov–Maxwell systems in the classical and quasineutral limits, SIAM J. Math. Anal., Volume 48 (2016) no. 5, pp. 3444-3466 | DOI | MR | Zbl

[27] Daniel Han-Kwan; Toan T. Nguyen; Frédéric Rousset Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit, Commun. Math. Phys., Volume 363 (2018) no. 2, pp. 389-434 | DOI | MR | Zbl

[28] Thomas Holding; Evelyne Miot Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces, Mathematical analysis in fluid mechanics—selected recent results (Contemporary Mathematics), Volume 710, American Mathematical Society, 2018, pp. 145-162 | DOI | MR | Zbl

[29] Sergiu Klainerman; Gigliola Staffilani A new approach to study the Vlasov–Maxwell system, Commun. Pure Appl. Anal., Volume 1 (2002) no. 1, pp. 103-125 | DOI | MR | Zbl

[30] Lev Landau; Evguéni Lifshitz Cours de physique théorique. II, Théorie des champs, Editions Mir, 1970

[31] Hayoung Lee The classical limit of the relativistic Vlasov–Maxwell system in two space dimensions, Math. Methods Appl. Sci., Volume 27 (2004) no. 3, pp. 249-287 | DOI | MR | Zbl

[32] Pierre-Louis Lions; Benoît Perthame Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR

[33] Grégoire Loeper Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006) no. 1, pp. 68-79 | DOI | MR | Zbl

[34] Jonathan Luk; Robert M. Strain A new continuation criterion for the relativistic Vlasov-Maxwell system, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 1005-1027 | MR | Zbl

[35] Andrew J. Majda; Andrea L. Bertozzi Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002, xii+545 pages

[36] Evelyne Miot A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | MR | Zbl

[37] Christophe Pallard A lower bound for the life span of solutions to relativistic Vlasov–Maxwell systems, Asymptotic Anal., Volume 56 (2008) no. 3-4, pp. 205-228 | MR | Zbl

[38] Christophe Pallard Moment Propagation for Weak Solutions to the Vlasov–Poisson System, Commun. Partial Differ. Equations, Volume 37 (2012) no. 7, pp. 1273-1285 | DOI | MR | Zbl

[39] Christophe Pallard Space moments of the Vlasov–Poisson system: propagation and regularity, SIAM J. Math. Anal., Volume 46 (2014) no. 3, pp. 1754-1770 | DOI | MR | Zbl

[40] Christophe Pallard A refined existence criterion for the relativistic Vlasov–Maxwell system, Commun. Math. Sci., Volume 13 (2015) no. 2, pp. 347-354 | DOI | MR | Zbl

[41] Klaus Pfaffelmoser Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differ. Equations, Volume 95 (1992), pp. 281-303 | DOI | MR | Zbl

[42] Raoul Robert Unicité de la solution faible à support compact de l’équation de Vlasov–Poisson, C. R. Math. Acad. Sci. Paris, Volume 324 (1997) no. 8, pp. 873-877 | DOI | MR | Zbl

[43] Jack Schaeffer The classical limit of the relativistic Vlasov–Maxwell system, Commun. Math. Phys., Volume 104 (1986) no. 3, pp. 403-421 http://projecteuclid.org/euclid.cmp/1104115084 | DOI | MR | Zbl

[44] Jack Schaeffer Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Commun. Partial Differ. Equations, Volume 16 (1991) no. 8-9, pp. 1313-1335 | DOI | MR | Zbl

[45] Jack Schaeffer A small data theorem for collisionless plasma that includes high velocity particles, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 1-34 | DOI | MR | Zbl

[46] Jack Schaeffer; Lei Wu The nonrelativistic limit of the relativistic Vlasov–Maxwell system, Math. Methods Appl. Sci., Volume 40 (2017) no. 3, pp. 3784-3798 | DOI | MR | Zbl

[47] Seiji Ukai; Takayoshi Okabe On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. Math., Volume 15 (1978) no. 2, pp. 245-261 http://projecteuclid.org/euclid.ojm/1200771271 | MR | Zbl

[48] Cédric Villani Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003, xvi+370 pages | DOI | MR

[49] Stephen Wollman An existence and uniqueness theorem for the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume 37 (1984) no. 4, pp. 457-462 | DOI | MR | Zbl

Cité par Sources :