We develop global pluripotential theory in the setting of Berkovich geometry over a trivially valued field. Specifically, we define and study functions and measures of finite energy and the non-Archimedean Monge–Ampère operator on any (possibly reducible) projective variety. We also investigate the topology of the space of valuations of linear growth, and the behavior of plurisubharmonic functions thereon.
Nous développons une théorie du pluripotentiel global dans le contexte de la géométrie de Berkovich sur un corps trivialement valué. Plus précisément, nous définissons et étudions des fonctions et mesures d’énergie finie et un opérateur de Monge–Ampère non-archimédien sur toute variéte projective (éventuellement réductible). Nous explorons également la topologie de l’espace des valuations à croissance linéaire, et le comportement des fonctions plurisousharmoniques sur celui-ci.
Sébastien Boucksom 1; Mattias Jonsson 2
@article{AFST_2022_6_31_3_647_0, author = {S\'ebastien Boucksom and Mattias Jonsson}, title = {Global pluripotential theory over a trivially valued field}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {647--836}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {3}, year = {2022}, doi = {10.5802/afst.1705}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1705/} }
TY - JOUR AU - Sébastien Boucksom AU - Mattias Jonsson TI - Global pluripotential theory over a trivially valued field JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 647 EP - 836 VL - 31 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1705/ DO - 10.5802/afst.1705 LA - en ID - AFST_2022_6_31_3_647_0 ER -
%0 Journal Article %A Sébastien Boucksom %A Mattias Jonsson %T Global pluripotential theory over a trivially valued field %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 647-836 %V 31 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1705/ %R 10.5802/afst.1705 %G en %F AFST_2022_6_31_3_647_0
Sébastien Boucksom; Mattias Jonsson. Global pluripotential theory over a trivially valued field. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 647-836. doi : 10.5802/afst.1705. https://afst.centre-mersenne.org/articles/10.5802/afst.1705/
[1] Comparison of two capacities in , Math. Z., Volume 186 (1984), pp. 407-417 | DOI | MR | Zbl
[2] Reductivity of the automorphism group of K-polystable Fano varieties, Invent. Math., Volume 222 (2020) no. 23, pp. 995-1032 | DOI | MR | Zbl
[3] Potential theory on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010 | DOI
[4] Envelopes of continuous, plurisubharmonic functions, Math. Ann., Volume 251 (1980), pp. 175-183 | DOI | MR | Zbl
[5] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl
[6] Fine topology, Šilov boundary and , J. Funct. Anal., Volume 72 (1987), pp. 225-251 | DOI | Zbl
[7] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR
[8] Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl
[9] Statistical mechanics of permanents, real Monge–Ampère equations and optimal transport (2013) | arXiv
[10] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | Zbl
[11] A variational approach to complex Monge–Ampère equations, Publ. Math., Volume 117 (2013), pp. 179-245 | DOI | Numdam | Zbl
[12] A variational approach to the Yau–Tian–Donaldson conjecture, J. Am. Math. Soc., Volume 34 (2021) no. 3, pp. 605-652 | DOI | MR | Zbl
[13] Non-Archimedean Arakelov Geometry, J. Algebr. Geom., Volume 4 (1995) no. 3, pp. 427-485
[14] On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | DOI | MR | Zbl
[15] On properness of K-moduli spaces and optimal degenerations of Fano varieties, Sel. Math., New Ser., Volume 27 (2021) no. 4, 73, 39 pages | MR | Zbl
[16] Thresholds, valuations, and K-stability, Adv. Math., Volume 365 (2020), 107062, 57 pages | MR | Zbl
[17] Openness of K-semistability for Fano varieties (2019) (to appear in Duke Math. J.) | arXiv
[18] Optimal destabilization of K-unstable Fano varieties via stability thresholds (1907) (to appear in Geom. Topol.) | arXiv
[19] Uniqueness of K-polystable degenerations of Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 609-656 | MR | Zbl
[20] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl
[21] The volume of an isolated singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1520 | MR | Zbl
[22] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 125 pages | MR | Zbl
[23] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[24] Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 449-494 | DOI | MR | Zbl
[25] Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl
[26] Solution to a non-Archimedean Monge–Ampère equation, J. Am. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | DOI | Zbl
[27] Singular semipositive metrics in non-Archimedean geometry, J. Algebr. Geom., Volume 25 (2016) no. 1, pp. 77-139 | DOI | MR | Zbl
[28] Differentiability of relative volumes over an arbitrary non-Archimedean field, Int. Math. Res. Not., Volume 2022 (2022) no. 8, pp. 6214-6242 | DOI | MR | Zbl
[29] Uniform -stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier, Volume 67 (2017) no. 2, pp. 743-841 | DOI | Numdam | MR | Zbl
[30] Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2905-2944 | DOI | Zbl
[31] Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl
[32] A non-Archimedean approach to K-stability (2018) | arXiv
[33] Singular semipositive metrics on line bundles on varieties over trivially valued fields (2018) | arXiv
[34] A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations (2021) | arXiv
[35] A non-Archimedean approach to K-stability, II: divisorial stability and openness (in preparation)
[36] Vanishing sequences and Okounkov bodies, Math. Ann., Volume 361 (2015) no. 3-4, pp. 811-834 | DOI | MR | Zbl
[37] Differentiability of non-archimedean volumes and non-archimedean Monge–Ampère equations (with an appendix by Robert Lazarsfeld), Algebr. Geom., Volume 7 (2020) no. 2, pp. 113-152 | Zbl
[38] Arithmetic geometry of toric varieties. Metrics, measures, and heights, Astérisque, 360, Société Mathématique de France, 2014
[39] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl
[40] Formes différentielles réelles et courants sur les espaces de Berkovich (2012) | arXiv
[41] Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 977-1014 | DOI | Numdam | Zbl
[42] Distribution of logarithmic spectra of the equilibrium energy, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 365-394 | DOI | MR | Zbl
[43] Intersection theory of nef b-divisor classes (2020) | arXiv
[44] The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI | MR | Zbl
[45] metric geometry of big cohomology classes, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 3053-3086 | DOI | Numdam | MR | Zbl
[46] Complex analytic and differential geometry (book available at the author’s web page http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)
[47] Mesures de Monge–Ampère et caractérisation géométrique des varétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér., Volume 19 (1985), pp. 1-125 | Zbl
[48] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[49] Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl
[50] K-stability for Kähler manifolds, Math. Res. Lett., Volume 24 (2017) no. 3, pp. 689-739 | DOI | Zbl
[51] The Kähler–Ricci flow and optimal degenerations, J. Differ. Geom., Volume 116 (2020) no. 1, pp. 187-203 | Zbl
[52] Finite pluricomplex energy measures, Potential Anal., Volume 44 (2016) no. 1, pp. 155-167 | DOI | MR | Zbl
[53] Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | MR | Zbl
[54] Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1443-1552 | DOI | Numdam | MR | Zbl
[55] Uniform approximation of Abhyankar valuation ideals in smooth function fields, Am. J. Math., Volume 125 (2003) no. 2, pp. 409-440 | MR | Zbl
[56] The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004 | DOI
[57] Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | DOI | MR | Zbl
[58] Valuative analysis of planar plurisubharmonic functions, Invent. Math., Volume 162 (2005) no. 2, pp. 271-311 | DOI | MR | Zbl
[59] Eigenvaluations, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 2, pp. 309-349 | DOI | Numdam | MR | Zbl
[60] Dynamical compactifications of , Ann. Math., Volume 173 (2011) no. 1, pp. 211-249 | DOI | MR | Zbl
[61] Real analysis: modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999
[62] On K-stability and the volume functions of -Fano varieties, Proc. Lond. Math. Soc., Volume 113 (2016) no. 5, pp. 1-42 | Numdam | MR | Zbl
[63] A valuative criterion for uniform K-stability of -Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 309-358 | DOI | MR | Zbl
[64] On the K-stability of Fano varieties and anticanonical divisors, Tôhoku Math. J., Volume 70 (2018) no. 4, pp. 511-521 | MR | Zbl
[65] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 | DOI
[66] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998 | DOI
[67] Affine open subsets of algebraic varieties and ample divisors, Ann. Math., Volume 89 (1969), pp. 160-183 | DOI | MR | Zbl
[68] Éléments de géométrie algébrique I-IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) (partie IV rédigée avec la colloboration de Jean Dieudonné) | Zbl
[69] Local heights of irreducible subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | DOI | Zbl
[70] Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | DOI | MR | Zbl
[71] Non-archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 643-730 | MR | Zbl
[72] Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra), Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2331-2376 | DOI | Numdam | Zbl
[73] A tropical approach to non-archimedean Arakelov theory, Algebra Number Theory, Volume 11 (2017) no. 1, pp. 77-180 | DOI | Zbl
[74] On Zhang’s semipositive metrics, Doc. Math., Volume 24 (2019), pp. 331-372 | MR | Zbl
[75] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | DOI | Zbl
[76] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl
[77] Degenerate Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017 | DOI
[78] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI
[79] Dynamics on Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | MR | Zbl
[80] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012) no. 6, pp. 2145-2209 | DOI | Numdam | MR | Zbl
[81] Variants of normality for Noetherian schemes, Pure Appl. Math. Q., Volume 12 (2016) no. 1, pp. 1-31 | DOI | MR | Zbl
[82] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI
[83] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl
[84] Non-Archimedean Kähler geometry (unpublished)
[85] Positivity in algebraic geometry. I-II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, 49, Springer, 2004
[86] Nonlinear Perron-Frobenius theory, Cambridge Tracts in Mathematics, 189, 2012 | DOI
[87] K-semistability is equivariant volume minimization, Duke Math. J., Volume 166 (2017) no. 16, pp. 3147-3218 | MR | Zbl
[88] Minimizing normalized volumes of valuations, Math. Z., Volume 289 (2018) no. 1-2, pp. 491-513 | MR | Zbl
[89] G-uniform stability and Kähler-Einstein metrics on Fano varieties (2019) (to appear in Invent. Math.) | arXiv
[90] Geodesic rays and stability in the cscK problem (2020) (to appear in Ann. Sci. Éc. Norm. Supér.) | arXiv
[91] The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties (2019) | arXiv
[92] A non-Archimedean analogue of Calabi-Yau theorem for totally degenerate abelian varieties, J. Differ. Geom., Volume 89 (2011) no. 1, pp. 87-110 | MR | Zbl
[93] Finite generation for valuations computing stability thresholds and applications to K-stability (2021) | arXiv
[94] Zariski decompositions and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004
[95] A generalization of the Ross-Thomas slope theory, Osaka J. Math., Volume 50 (2013) no. 1, pp. 171-185 | MR | Zbl
[96] On parametrization, optimization and triviality of test configurations, Proc. Am. Math. Soc., Volume 143 (2015) no. 1, pp. 25-33 | DOI | MR | Zbl
[97] Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | Zbl
[98] Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy (2020) | arXiv
[99] The asymptotic Fubini-Study operator over general non-Archimedean fields, Math. Z., Volume 299 (2021) no. 3-4, pp. 2341-2378 | DOI | MR | Zbl
[100] Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | DOI | MR | Zbl
[101] Convergence of volume forms on a family of log-Calabi-Yau varieties to a non-Archimedean measure (2019) | arXiv
[102] K-semistability of cscK manifolds with transcendental cohomology class, J. Geom. Anal., Volume 28 (2018) no. 4, pp. 2927-2960 | DOI | MR | Zbl
[103] Stacks Project (http://stacks.math.columbia.edu)
[104] A note on the definition of K-stability (2011) | arXiv
[105] On certain contraction mappings in a partially ordered vector space, Proc. Am. Math. Soc., Volume 14 (1963), pp. 438-443 | MR | Zbl
[106] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications á la théorie d’Arakelov, Ph. D. Thesis, Université de Rennes I (France) (2005) (available at http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf)
[107] On positivity of the CM line bundle on K-moduli spaces, Ann. Math., Volume 192 (2020) no. 3, pp. 1005-1068 | MR | Zbl
[108] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
[109] The arithmetic Hodge Theorem for adelic line bundles, Math. Ann., Volume 367 (2017) no. 3-4, pp. 1123-1171 | DOI | MR | Zbl
[110] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl
Cited by Sources: