Global pluripotential theory over a trivially valued field
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 647-836.

We develop global pluripotential theory in the setting of Berkovich geometry over a trivially valued field. Specifically, we define and study functions and measures of finite energy and the non-Archimedean Monge–Ampère operator on any (possibly reducible) projective variety. We also investigate the topology of the space of valuations of linear growth, and the behavior of plurisubharmonic functions thereon.

Nous développons une théorie du pluripotentiel global dans le contexte de la géométrie de Berkovich sur un corps trivialement valué. Plus précisément, nous définissons et étudions des fonctions et mesures d’énergie finie et un opérateur de Monge–Ampère non-archimédien sur toute variéte projective (éventuellement réductible). Nous explorons également la topologie de l’espace des valuations à croissance linéaire, et le comportement des fonctions plurisousharmoniques sur celui-ci.

Published online:
DOI: 10.5802/afst.1705

Sébastien Boucksom 1; Mattias Jonsson 2

1 CNRS–CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France
2 Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_3_647_0,
     author = {S\'ebastien Boucksom and Mattias Jonsson},
     title = {Global pluripotential theory over a trivially valued field},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {647--836},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1705},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1705/}
}
TY  - JOUR
AU  - Sébastien Boucksom
AU  - Mattias Jonsson
TI  - Global pluripotential theory over a trivially valued field
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 647
EP  - 836
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1705/
DO  - 10.5802/afst.1705
LA  - en
ID  - AFST_2022_6_31_3_647_0
ER  - 
%0 Journal Article
%A Sébastien Boucksom
%A Mattias Jonsson
%T Global pluripotential theory over a trivially valued field
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 647-836
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1705/
%R 10.5802/afst.1705
%G en
%F AFST_2022_6_31_3_647_0
Sébastien Boucksom; Mattias Jonsson. Global pluripotential theory over a trivially valued field. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 647-836. doi : 10.5802/afst.1705. https://afst.centre-mersenne.org/articles/10.5802/afst.1705/

[1] Herbert J. Alexander; Bert A. Taylor Comparison of two capacities in C n , Math. Z., Volume 186 (1984), pp. 407-417 | DOI | MR | Zbl

[2] Jarod Alper; Harold Blum; Daniel Halpern-Leistner; Chenyang Xu Reductivity of the automorphism group of K-polystable Fano varieties, Invent. Math., Volume 222 (2020) no. 23, pp. 995-1032 | DOI | MR | Zbl

[3] Matthew Baker; Robert Rumely Potential theory on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010 | DOI

[4] Eric Bedford Envelopes of continuous, plurisubharmonic functions, Math. Ann., Volume 251 (1980), pp. 175-183 | DOI | MR | Zbl

[5] Eric Bedford; Bert A. Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl

[6] Eric Bedford; Bert A. Taylor Fine topology, Šilov boundary and (dd c ) n , J. Funct. Anal., Volume 72 (1987), pp. 225-251 | DOI | Zbl

[7] Vladimir G. Berkovich Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR

[8] Vladimir G. Berkovich Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl

[9] Robert J. Berman Statistical mechanics of permanents, real Monge–Ampère equations and optimal transport (2013) | arXiv

[10] Robert J. Berman; Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | Zbl

[11] Robert J. Berman; Sébastien Boucksom; Vincent Guedj; Ahmed Zeriahi A variational approach to complex Monge–Ampère equations, Publ. Math., Volume 117 (2013), pp. 179-245 | DOI | Numdam | Zbl

[12] Robert J. Berman; Sébastien Boucksom; Mattias Jonsson A variational approach to the Yau–Tian–Donaldson conjecture, J. Am. Math. Soc., Volume 34 (2021) no. 3, pp. 605-652 | DOI | MR | Zbl

[13] Spencer Bloch; Henri Gillet; Christophe Soulé Non-Archimedean Arakelov Geometry, J. Algebr. Geom., Volume 4 (1995) no. 3, pp. 427-485

[14] Zbigniew Błocki; Sławomir Kołodziej On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | DOI | MR | Zbl

[15] Harold Blum; Daniel Halpern-Leistner; Yuchen Liu; Chenyang Xu On properness of K-moduli spaces and optimal degenerations of Fano varieties, Sel. Math., New Ser., Volume 27 (2021) no. 4, 73, 39 pages | MR | Zbl

[16] Harold Blum; Mattias Jonsson Thresholds, valuations, and K-stability, Adv. Math., Volume 365 (2020), 107062, 57 pages | MR | Zbl

[17] Harold Blum; Yuchen Liu; Chenyang Xu Openness of K-semistability for Fano varieties (2019) (to appear in Duke Math. J.) | arXiv

[18] Harold Blum; Yuchen Liu; Chuyu Zhou Optimal destabilization of K-unstable Fano varieties via stability thresholds (1907) (to appear in Geom. Topol.) | arXiv

[19] Harold Blum; Chenyang Xu Uniqueness of K-polystable degenerations of Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 609-656 | MR | Zbl

[20] Sébastien Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[21] Sébastien Boucksom; Tommaso De Fernex; Charles Favre The volume of an isolated singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1520 | MR | Zbl

[22] Sébastien Boucksom; Dennis Eriksson Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 125 pages | MR | Zbl

[23] Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl

[24] Sébastien Boucksom; Charles Favre; Mattias Jonsson Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 449-494 | DOI | MR | Zbl

[25] Sébastien Boucksom; Charles Favre; Mattias Jonsson Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl

[26] Sébastien Boucksom; Charles Favre; Mattias Jonsson Solution to a non-Archimedean Monge–Ampère equation, J. Am. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | DOI | Zbl

[27] Sébastien Boucksom; Charles Favre; Mattias Jonsson Singular semipositive metrics in non-Archimedean geometry, J. Algebr. Geom., Volume 25 (2016) no. 1, pp. 77-139 | DOI | MR | Zbl

[28] Sébastien Boucksom; Walter Gubler; Florent Martin Differentiability of relative volumes over an arbitrary non-Archimedean field, Int. Math. Res. Not., Volume 2022 (2022) no. 8, pp. 6214-6242 | DOI | MR | Zbl

[29] Sébastien Boucksom; Tomoyuki Hisamoto; Mattias Jonsson Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier, Volume 67 (2017) no. 2, pp. 743-841 | DOI | Numdam | MR | Zbl

[30] Sébastien Boucksom; Tomoyuki Hisamoto; Mattias Jonsson Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2905-2944 | DOI | Zbl

[31] Sébastien Boucksom; Mattias Jonsson Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl

[32] Sébastien Boucksom; Mattias Jonsson A non-Archimedean approach to K-stability (2018) | arXiv

[33] Sébastien Boucksom; Mattias Jonsson Singular semipositive metrics on line bundles on varieties over trivially valued fields (2018) | arXiv

[34] Sébastien Boucksom; Mattias Jonsson A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations (2021) | arXiv

[35] Sébastien Boucksom; Mattias Jonsson A non-Archimedean approach to K-stability, II: divisorial stability and openness (in preparation)

[36] Sébastien Boucksom; Alex Küronya; Catriona Maclean; Tomasz Szemberg Vanishing sequences and Okounkov bodies, Math. Ann., Volume 361 (2015) no. 3-4, pp. 811-834 | DOI | MR | Zbl

[37] José Ignacio Burgos Gil; Walter Gubler; Philipp Jell; Klaus Künnemann; Florent Martin Differentiability of non-archimedean volumes and non-archimedean Monge–Ampère equations (with an appendix by Robert Lazarsfeld), Algebr. Geom., Volume 7 (2020) no. 2, pp. 113-152 | Zbl

[38] José Ignacio Burgos Gil; Patrice Philippon; Martín Sombra Arithmetic geometry of toric varieties. Metrics, measures, and heights, Astérisque, 360, Société Mathématique de France, 2014

[39] Antoine Chambert-Loir Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl

[40] Antoine Chambert-Loir; Antoine Ducros Formes différentielles réelles et courants sur les espaces de Berkovich (2012) | arXiv

[41] Antoine Chambert-Loir; Amaury Thuillier Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 977-1014 | DOI | Numdam | Zbl

[42] Huayi Chen; Catriona Maclean Distribution of logarithmic spectra of the equilibrium energy, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 365-394 | DOI | MR | Zbl

[43] Nguyen-Bac Dang; Charles Favre Intersection theory of nef b-divisor classes (2020) | arXiv

[44] Tamás Darvas The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI | MR | Zbl

[45] Tamás Darvas; Eleonora Di Nezza; Chinh H. Lu L 1 metric geometry of big cohomology classes, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 3053-3086 | DOI | Numdam | MR | Zbl

[46] Jean-Pierre Demailly Complex analytic and differential geometry (book available at the author’s web page http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)

[47] Jean-Pierre Demailly Mesures de Monge–Ampère et caractérisation géométrique des varétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér., Volume 19 (1985), pp. 1-125 | Zbl

[48] Jean-Pierre Demailly Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl

[49] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl

[50] Ruadhaí Dervan; Julius Ross K-stability for Kähler manifolds, Math. Res. Lett., Volume 24 (2017) no. 3, pp. 689-739 | DOI | Zbl

[51] Ruadhaí Dervan; Gábor Székelyhidi The Kähler–Ricci flow and optimal degenerations, J. Differ. Geom., Volume 116 (2020) no. 1, pp. 187-203 | Zbl

[52] Eleonora Di Nezza Finite pluricomplex energy measures, Potential Anal., Volume 44 (2016) no. 1, pp. 155-167 | DOI | MR | Zbl

[53] Simon K. Donaldson Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | MR | Zbl

[54] Antoine Ducros Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1443-1552 | DOI | Numdam | MR | Zbl

[55] Lawrence Ein; Robert Lazarsfeld; Karen E. Smith Uniform approximation of Abhyankar valuation ideals in smooth function fields, Am. J. Math., Volume 125 (2003) no. 2, pp. 409-440 | MR | Zbl

[56] Charles Favre; Mattias Jonsson The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004 | DOI

[57] Charles Favre; Mattias Jonsson Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | DOI | MR | Zbl

[58] Charles Favre; Mattias Jonsson Valuative analysis of planar plurisubharmonic functions, Invent. Math., Volume 162 (2005) no. 2, pp. 271-311 | DOI | MR | Zbl

[59] Charles Favre; Mattias Jonsson Eigenvaluations, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 2, pp. 309-349 | DOI | Numdam | MR | Zbl

[60] Charles Favre; Mattias Jonsson Dynamical compactifications of 2 , Ann. Math., Volume 173 (2011) no. 1, pp. 211-249 | DOI | MR | Zbl

[61] Gerald B. Folland Real analysis: modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999

[62] Kento Fujita On K-stability and the volume functions of -Fano varieties, Proc. Lond. Math. Soc., Volume 113 (2016) no. 5, pp. 1-42 | Numdam | MR | Zbl

[63] Kento Fujita A valuative criterion for uniform K-stability of -Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 309-358 | DOI | MR | Zbl

[64] Kento Fujita; Yuji Odaka On the K-stability of Fano varieties and anticanonical divisors, Tôhoku Math. J., Volume 70 (2018) no. 4, pp. 511-521 | MR | Zbl

[65] William Fulton Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 | DOI

[66] William Fulton Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998 | DOI

[67] Jacob E. Goodman Affine open subsets of algebraic varieties and ample divisors, Ann. Math., Volume 89 (1969), pp. 160-183 | DOI | MR | Zbl

[68] Alexander Grothendieck Éléments de géométrie algébrique I-IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) (partie IV rédigée avec la colloboration de Jean Dieudonné) | Zbl

[69] Walter Gubler Local heights of irreducible subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | DOI | Zbl

[70] Walter Gubler Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | DOI | MR | Zbl

[71] Walter Gubler Non-archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 643-730 | MR | Zbl

[72] Walter Gubler; Philipp Jell; Klaus Künnemann; Florent Martin Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra), Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2331-2376 | DOI | Numdam | Zbl

[73] Walter Gubler; Klaus Künnemann A tropical approach to non-archimedean Arakelov theory, Algebra Number Theory, Volume 11 (2017) no. 1, pp. 77-180 | DOI | Zbl

[74] Walter Gubler; Florent Martin On Zhang’s semipositive metrics, Doc. Math., Volume 24 (2019), pp. 331-372 | MR | Zbl

[75] Vincent Guedj; Ahmed Zeriahi Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | DOI | Zbl

[76] Vincent Guedj; Ahmed Zeriahi The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl

[77] Vincent Guedj; Ahmed Zeriahi Degenerate Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017 | DOI

[78] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI

[79] Mattias Jonsson Dynamics on Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | MR | Zbl

[80] Mattias Jonsson; Mircea Mustaţă Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012) no. 6, pp. 2145-2209 | DOI | Numdam | MR | Zbl

[81] János Kollár Variants of normality for Noetherian schemes, Pure Appl. Math. Q., Volume 12 (2016) no. 1, pp. 1-31 | DOI | MR | Zbl

[82] János Kollár; Shigefumi Mori Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI

[83] Sławomir Kołodziej The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl

[84] M. Kontsevich; Y. Tschinkel Non-Archimedean Kähler geometry (unpublished)

[85] Robert Lazarsfeld Positivity in algebraic geometry. I-II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, 49, Springer, 2004

[86] Bas Lemmens; Roger Nussbaum Nonlinear Perron-Frobenius theory, Cambridge Tracts in Mathematics, 189, 2012 | DOI

[87] Chi Li K-semistability is equivariant volume minimization, Duke Math. J., Volume 166 (2017) no. 16, pp. 3147-3218 | MR | Zbl

[88] Chi Li Minimizing normalized volumes of valuations, Math. Z., Volume 289 (2018) no. 1-2, pp. 491-513 | MR | Zbl

[89] Chi Li G-uniform stability and Kähler-Einstein metrics on Fano varieties (2019) (to appear in Invent. Math.) | arXiv

[90] Chi Li Geodesic rays and stability in the cscK problem (2020) (to appear in Ann. Sci. Éc. Norm. Supér.) | arXiv

[91] Chi Li; Gang Tian; Feng Wang The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties (2019) | arXiv

[92] Yifeng Liu A non-Archimedean analogue of Calabi-Yau theorem for totally degenerate abelian varieties, J. Differ. Geom., Volume 89 (2011) no. 1, pp. 87-110 | MR | Zbl

[93] Yuchen Liu; Chenyang Xu; Ziquan Zhuang Finite generation for valuations computing stability thresholds and applications to K-stability (2021) | arXiv

[94] Noboru Nakayama Zariski decompositions and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004

[95] Yuji Odaka A generalization of the Ross-Thomas slope theory, Osaka J. Math., Volume 50 (2013) no. 1, pp. 171-185 | MR | Zbl

[96] Yuji Odaka On parametrization, optimization and triviality of test configurations, Proc. Am. Math. Soc., Volume 143 (2015) no. 1, pp. 25-33 | DOI | MR | Zbl

[97] Jérôme Poineau Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | Zbl

[98] Rémi Reboulet Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy (2020) | arXiv

[99] Rémi Reboulet The asymptotic Fubini-Study operator over general non-Archimedean fields, Math. Z., Volume 299 (2021) no. 3-4, pp. 2341-2378 | DOI | MR | Zbl

[100] Julius Ross; David Witt Nyström Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | DOI | MR | Zbl

[101] Sanal Shivaprasad Convergence of volume forms on a family of log-Calabi-Yau varieties to a non-Archimedean measure (2019) | arXiv

[102] Zakarias Sjöström Dyrefelt K-semistability of cscK manifolds with transcendental cohomology class, J. Geom. Anal., Volume 28 (2018) no. 4, pp. 2927-2960 | DOI | MR | Zbl

[103] Stacks Project Authors Stacks Project (http://stacks.math.columbia.edu)

[104] Jacopo Stoppa A note on the definition of K-stability (2011) | arXiv

[105] Anthony C. Thompson On certain contraction mappings in a partially ordered vector space, Proc. Am. Math. Soc., Volume 14 (1963), pp. 438-443 | MR | Zbl

[106] Amaury Thuillier Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications á la théorie d’Arakelov, Ph. D. Thesis, Université de Rennes I (France) (2005) (available at http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf)

[107] Chenyang Xu; Ziquan Zhuang On positivity of the CM line bundle on K-moduli spaces, Ann. Math., Volume 192 (2020) no. 3, pp. 1005-1068 | MR | Zbl

[108] Shing-Tung Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl

[109] Xinyi Yuan; Shouwu Zhang The arithmetic Hodge Theorem for adelic line bundles, Math. Ann., Volume 367 (2017) no. 3-4, pp. 1123-1171 | DOI | MR | Zbl

[110] Shouwu Zhang Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl

Cited by Sources: