logo AFST
Iterated S 3 Sasaki Joins and Bott Orbifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 837-860.

We present a categorical relationship between iterated S 3 Sasaki-joins and Bott orbifolds. Then we show how to construct smooth Sasaki–Einstein (SE) structures on the iterated joins. These become increasingly complicated as dimension grows. We give an explicit nontrivial construction of (infinitely many) smooth SE structures up through dimension eleven, and conjecture the existence of smooth SE structures in all odd dimensions.

Nous présentons une relation catégorique entre les jointures Sasaki S 3 itérées et les orbifolds Bott. Ensuite, nous montrons comment construire des structures Sasaki–Einstein (SE) lisses sur les jointures itérées. Celles-ci deviennent de plus en plus compliquées à mesure que la dimension augmente. Nous donnons une construction non triviale explicite de structures SE lisses (infiniment nombreuses) jusqu’à la dimension onze, et conjecturons l’existence de structures SE lisses dans toutes les dimensions impaires.

Published online:
DOI: 10.5802/afst.1706
Charles P. Boyer 1; Christina W. Tønnesen-Friedman 2

1 Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
2 Department of Mathematics, Union College, Schenectady, NY 12308, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_3_837_0,
     author = {Charles P. Boyer and Christina W. T{\o}nnesen-Friedman},
     title = {Iterated $S^3$ {Sasaki} {Joins} and {Bott} {Orbifolds}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {837--860},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1706},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1706/}
}
TY  - JOUR
AU  - Charles P. Boyer
AU  - Christina W. Tønnesen-Friedman
TI  - Iterated $S^3$ Sasaki Joins and Bott Orbifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
DA  - 2022///
SP  - 837
EP  - 860
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1706/
UR  - https://doi.org/10.5802/afst.1706
DO  - 10.5802/afst.1706
LA  - en
ID  - AFST_2022_6_31_3_837_0
ER  - 
%0 Journal Article
%A Charles P. Boyer
%A Christina W. Tønnesen-Friedman
%T Iterated $S^3$ Sasaki Joins and Bott Orbifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 837-860
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1706
%R 10.5802/afst.1706
%G en
%F AFST_2022_6_31_3_837_0
Charles P. Boyer; Christina W. Tønnesen-Friedman. Iterated $S^3$ Sasaki Joins and Bott Orbifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 837-860. doi : 10.5802/afst.1706. https://afst.centre-mersenne.org/articles/10.5802/afst.1706/

[1] Miguel Abreu; Leonardo Macarini Contact homology of good toric contact manifolds, Compos. Math., Volume 148 (2012) no. 1, pp. 304-334 | DOI | MR | Zbl

[2] Miguel Abreu; Leonardo Macarini On the mean Euler characteristic of Gorenstein toric contact manifolds, Int. Math. Res. Not., Volume 2020 (2018) no. 14, p. 44-65–4495 | Zbl

[3] Charles P. Boyer; David M. J. Calderbank; Christina W. Tønnesen-Friedman The Kähler geometry of Bott manifolds, Adv. Math., Volume 350 (2019), pp. 1-62 | DOI | Zbl

[4] Charles P. Boyer; Krzysztof Galicki Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008

[5] Charles P. Boyer; Krzysztof Galicki; Liviu Ornea Constructions in Sasakian geometry, Math. Z., Volume 257 (2007) no. 4, pp. 907-924 | DOI | MR | Zbl

[6] Charles P. Boyer; Hongnian Huang; Eveline Legendre An application of the Duistermaat–Heckman theorem and its extensions in Sasaki geometry, Geom. Topol., Volume 22 (2018) no. 7, pp. 4205-4234 | DOI | MR | Zbl

[7] Charles P. Boyer; Hongnian Huang; Eveline Legendre; Christina W. Tønnesen-Friedman Reducibility in Sasakian geometry, Trans. Am. Math. Soc., Volume 370 (2018) no. 10, pp. 6825-6869 | DOI | MR | Zbl

[8] Charles P. Boyer; Justin Pati On the equivalence problem for toric contact structures on S 3 -bundles over S 2 , Pac. J. Math., Volume 267 (2014) no. 2, pp. 277-324 | DOI | MR | Zbl

[9] Charles P. Boyer; Christina W. Tønnesen-Friedman The S 3 Sasaki join construction (to appear in J. Math. Soc. Japan) | arXiv

[10] Charles P. Boyer; Christina W. Tønnesen-Friedman The Sasaki join, Hamiltonian 2-forms, and constant scalar curvature, J. Geom. Anal., Volume 26 (2016) no. 2, pp. 1023-1060 | DOI | MR | Zbl

[11] Charles P. Boyer; Christina W. Tønnesen-Friedman Sasaki–Einstein metrics on a class of 7-manifolds, J. Geom. Phys., Volume 140 (2019), pp. 111-124 | DOI | MR | Zbl

[12] Charles P. Boyer; Christina W. Tønnesen-Friedman On positivity in Sasaki geometry, Geom. Dedicata, Volume 204 (2020), pp. 149-164 | DOI | MR | Zbl

[13] Simon K. Donaldson Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, 2012, pp. 49-79 | DOI | Zbl

[14] Jerome P. Gauntlett; Dario Martelli; James Sparks; Daniel Waldram Sasaki–Einstein metrics on S 2 ×S 3 , Adv. Theor. Math. Phys., Volume 8 (2004) no. 4, pp. 711-734 | DOI | MR | Zbl

[15] Robert Goldblatt Topoi. The categorial analysis of logic, Studies in Logic and the Foundations of Mathematics, 98, North-Holland, 1984

[16] Michael Grossberg; Yael Karshon Bott towers, complete integrability, and the extended character of representations, Duke Math. J., Volume 76 (1994) no. 1, pp. 23-58 | MR | Zbl

[17] Peter T. Johnstone Topos theory, London Mathematical Society Monographs, 10, Academic Press Inc., 1977

[18] Norihito Koiso; Yusuke Sakane Non-homogeneous Kähler–Einstein metrics on compact complex manifolds, Curvature and topology of Riemannian manifolds (Lecture Notes in Mathematics), Volume 1201, Springer, 1986, pp. 165-179 | DOI | Zbl

[19] Robert Lazarsfeld Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004

[20] Eugene Lerman Orbifolds as stacks?, Enseign. Math., Volume 56 (2010) no. 3, pp. 315-363 | DOI | MR | Zbl

[21] Saunders Mac Lane; Ieke Moerdijk Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer, 1994 | DOI

[22] Ieke Moerdijk Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Contemporary Mathematics), Volume 310, American Mathematical Society, 2001, pp. 205-222 | DOI | Zbl

[23] Ieke Moerdijk; Janez Mrčun Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, 91, Cambridge University Press, 2003 | DOI

[24] Ieke Moerdijk; Dorette A. Pronk Orbifolds, sheaves and groupoids, K-Theory, Volume 12 (1997) no. 1, pp. 3-21 | DOI | MR | Zbl

[25] Yusuke Suyama Fano generalized Bott manifolds, Manuscr. Math., Volume 163 (2020) no. 3-4, pp. 427-435 | DOI | MR | Zbl

[26] Angelo Vistoli Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry (Mathematical Surveys and Monographs), Volume 123, American Mathematical Society, 2005, pp. 1-104 | MR

Cited by Sources: