Curvature formula for direct images of twisted relative canonical bundles endowed with a singular metric
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 861-905.

In this note, we obtain various formulas for the curvature of the L 2 metric on the direct image of the relative canonical bundle twisted by a holomorphic line bundle endowed with a positively curved metric with analytic singularities, generalizing some of Berndtsson’s seminal results in the smooth case. When the twist is assumed to be relatively big, we further provide a very explicit lower bound for the curvature of the L 2 metric.

Dans cette note, nous obtenons diverses formules pour la courbure de la métriques L 2 sur l’image directe du fibré canonique relatif tordu par un fibré en droites holomorphe muni d’une métrique à courbure positive avec singularités analytiques, généralisant certains des résultats fondateurs de Berndtsson dans le cas lisse. Quand le fibré par lequel on tord est gros, nous pouvons de plus donner une borne inférieure explicite de la courbure de la métrique L 2 .

Published online:
DOI: 10.5802/afst.1707

Junyan Cao 1; Henri Guenancia 2; Mihai Păun 3

1 Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, Université Côte d’Azur, Parc Valrose, 06108 Nice Cedex 02, France
2 Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse; CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
3 Institut für Mathematik, Universität Bayreuth, 95440 Bayreuth, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_3_861_0,
     author = {Junyan Cao and Henri Guenancia and Mihai P\u{a}un},
     title = {Curvature formula for direct images of twisted relative canonical bundles endowed with a singular metric},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {861--905},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1707},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1707/}
}
TY  - JOUR
AU  - Junyan Cao
AU  - Henri Guenancia
AU  - Mihai Păun
TI  - Curvature formula for direct images of twisted relative canonical bundles endowed with a singular metric
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 861
EP  - 905
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1707/
DO  - 10.5802/afst.1707
LA  - en
ID  - AFST_2022_6_31_3_861_0
ER  - 
%0 Journal Article
%A Junyan Cao
%A Henri Guenancia
%A Mihai Păun
%T Curvature formula for direct images of twisted relative canonical bundles endowed with a singular metric
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 861-905
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1707/
%R 10.5802/afst.1707
%G en
%F AFST_2022_6_31_3_861_0
Junyan Cao; Henri Guenancia; Mihai Păun. Curvature formula for direct images of twisted relative canonical bundles endowed with a singular metric. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 861-905. doi : 10.5802/afst.1707. https://afst.centre-mersenne.org/articles/10.5802/afst.1707/

[1] Hugues Auvray The space of Poincaré type Kähler metrics on the complement of a divisor, J. Reine Angew. Math., Volume 722 (2017), pp. 1-64 | DOI | MR | Zbl

[2] Bo Berndtsson Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009), pp. 531-560 | DOI | MR | Zbl

[3] Bo Berndtsson Strict and nonstrict positivity of direct image bundles, Math. Z., Volume 269 (2011) no. 3-4, pp. 1201-1218 | DOI | MR | Zbl

[4] José Bertin; Jean-Pierre Demailly; Luc Illusie; Chris Peters Introduction to Hodge theory. Transl. from the French by James Lewis and Chris Peters, SMF/AMS Texts and Monographs, 8, American Mathematical Society, 2002, ix+232 pages | Zbl

[5] Sébastien Boucksom On the volume of a line bundle., Int. J. Math., Volume 13 (2002) no. 10, pp. 1043-1063 | DOI | MR | Zbl

[6] Junyan Cao Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and applications, Complex and symplectic geometry (Springer INdAM Series), Volume 21, Springer, 2017, pp. 19-38 | MR | Zbl

[7] Junyan Cao; Mihai Păun On extension of pluricanonical forms defined on the central fiber of a Kähler family (2020) | arXiv

[8] Shiu-Yuen Cheng; Shing-Tung Yau Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math., Volume 28 (1975) no. 3, pp. 333-354 | DOI | MR | Zbl

[9] Jean-Pierre Demailly Complex Analytic and Differential Geometry, 2012 (OpenContent Book, freely available from the author’s web site, http://www-fourier.ujf-grenoble.fr/~demailly/books.html)

[10] Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou Positivity of holomorphic vector bundles in terms of L p -conditions of ¯ (2020) | arXiv

[11] Henri Guenancia Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor, Ann. Inst. Fourier, Volume 64 (2014) no. 6, pp. 1291-1330 | DOI | Numdam | MR | Zbl

[12] Ryoichi Kobayashi Kähler–Einstein metrics on an open algebraic manifolds, Osaka J. Math., Volume 21 (1984), pp. 399-418

[13] Kunihiko Kodaira Complex manifolds and deformation of complex structures. Transl. from the Japanese by Kazuo Akao, Grundlehren der Mathematischen Wissenschaften, 283, Springer, 1986 | DOI | Zbl

[14] Shin-ichi Matsumura Injectivity theorems with multiplier ideal sheaves for higher direct images under Kähler morphisms (2016) (to appear in Algebr. Geom.) | arXiv

[15] Philipp Naumann Positivity of direct images with a Poincaré type twist (2020) | arXiv

[16] Mihai Păun Singular Hermitian metrics and positivity of direct images of pluricanonical bundles, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 519-553 | MR | Zbl

[17] Mihai Păun; Shigeharu Takayama Positivity of twisted relative pluricanonical bundles and their direct images, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 211-272 | DOI | MR | Zbl

[18] Georg Schumacher Positivity of relative canonical bundles and applications, Invent. Math., Volume 190 (2012) no. 1, pp. 1-56 | DOI | MR | Zbl

[19] Yum Tong Siu Curvature of the Weil–Petersson metric in the moduli space of compact Kähler–Einstein manifolds of negative first Chern class, Contributions to several complex variables (Aspects of Mathematics), Volume E9, Vieweg & Sohn, 1986, pp. 261-298 | MR | Zbl

[20] Gang Tian; Shing-Tung Yau Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (San Diego, Calif., 1986) (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 574-628 | DOI

Cited by Sources: