We consider the semilinear diffusion equation in the half-space , where is a linear diffusion operator, which may be the classical Laplace operator, or a fractional Laplace operator, or an appropriate non regularizing nonlocal operator. The equation is supplemented with an initial data which is nonnegative in the half-space , and the Dirichlet boundary condition for .
We prove that if the symbol of the operator is of order near the origin , for some and , then any positive solution of the semilinear diffusion equation blows up in finite time whenever . On the other hand, we prove existence of positive global solutions of the semilinear diffusion equation in a half-space when . Notice that in the case of the half-space, the exponent is smaller than the so-called Fujita exponent in .
As a consequence we can also solve the blow-up issue for solutions of the above mentioned semilinear diffusion equation in the whole of , which are odd in the direction (and thus sign changing).
On considère l’équation semi linéaire dans le demi-espace , où est un opérateur linéaire de diffusion, qui peut être le Laplacien « classique », ou le Laplacien fractionnaire, ou un opérateur non local et non régularisant. L’équation est complétée par une donnée initiale positive dans le demi-espace , et la condition de Dirichlet pour .
On prouve que si le symbole de l’opérateur est de l’ordre de au voisinage de l’origine , avec et , alors toute solution strictement positive explose en temps fini dès que . En revanche, on prouve l’existence de solutions strictement positives globales quand . Notons que, dans le cas considéré du demi-espace , l’exposant est inférieur à l’exposant de Fujita dans l’espace .
Ceci nous permet également de résoudre la question de l’explosion pour les solutions de l’équation semi linéaire dans tout l’espace, , qui sont impaires dans la direction (et qui, donc, changent de signe).
Accepted:
Published online:
Keywords: Sign changing solutions, half-space, blow-up solutions, global solutions, Fujita exponent, nonlocal diffusion, dispersal tails
Matthieu Alfaro 1; Otared Kavian 2
@article{AFST_2022_6_31_5_1259_0, author = {Matthieu Alfaro and Otared Kavian}, title = {Blow-up phenomena for positive solutions of semilinear diffusion equations in a half-space: the influence of the dispersion kernel}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1259--1286}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {5}, year = {2022}, doi = {10.5802/afst.1718}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1718/} }
TY - JOUR AU - Matthieu Alfaro AU - Otared Kavian TI - Blow-up phenomena for positive solutions of semilinear diffusion equations in a half-space: the influence of the dispersion kernel JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1259 EP - 1286 VL - 31 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1718/ DO - 10.5802/afst.1718 LA - en ID - AFST_2022_6_31_5_1259_0 ER -
%0 Journal Article %A Matthieu Alfaro %A Otared Kavian %T Blow-up phenomena for positive solutions of semilinear diffusion equations in a half-space: the influence of the dispersion kernel %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1259-1286 %V 31 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1718/ %R 10.5802/afst.1718 %G en %F AFST_2022_6_31_5_1259_0
Matthieu Alfaro; Otared Kavian. Blow-up phenomena for positive solutions of semilinear diffusion equations in a half-space: the influence of the dispersion kernel. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1259-1286. doi : 10.5802/afst.1718. https://afst.centre-mersenne.org/articles/10.5802/afst.1718/
[1] Fujita blow up phenomena and hair trigger effect: the role of dispersal tails, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 6, pp. 1309-1327 | DOI | MR | Zbl
[2] Propagation phenomena in monostable integro-differential equations: acceleration or not?, J. Differ. Equations, Volume 263 (2017) no. 9, pp. 5727-5758 | DOI | MR | Zbl
[4] Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., Volume 86 (2006) no. 3, pp. 271-291 | DOI | MR | Zbl
[5] On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb., Sect. A, Math., Volume 137 (2007) no. 4, pp. 727-755 | DOI | MR | Zbl
[6] Probability: theory and examples, Duxbury Press, 1996, xiii+503 pages | MR
[7] On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 13 (1966), pp. 109-124 | MR | Zbl
[8] Fujita exponents for evolution problems with nonlocal diffusion, J. Evol. Equ., Volume 10 (2010) no. 1, pp. 147-161 | DOI | MR | Zbl
[9] Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., Volume 43 (2011) no. 4, pp. 1955-1974 | DOI | MR | Zbl
[10] On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad., Volume 49 (1973), pp. 503-505 | MR | Zbl
[11] Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 4 (1987) no. 5, pp. 423-452 | DOI | Numdam | MR | Zbl
[12] On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, Volume 29 (1977) no. 3, pp. 407-424 | MR | Zbl
[13] Spreading disease: integro-differential equations old and new, Math. Biosci., Volume 184 (2003) no. 2, pp. 201-222 | DOI | MR | Zbl
[14] On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., Volume 12 (1975), pp. 45-51 | MR | Zbl
[15] Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981) no. 1-2, pp. 29-40 | DOI | MR | Zbl
Cited by Sources: