On the algebraic properties of exponentially stable integrable hamiltonian systems
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1365-1390.

Steepness is a generic geometric property which, together with complex-analyticity, is needed in order to ensure stability of a nearly-integrable hamiltonian system over exponentially long times. Following a strategy developed by Nekhoroshev, we construct sufficient conditions for steepness of a given function that involve algebraic equations on its derivatives up to order five. This is important in view of applications (e.g. in Celestial Mechanics). The underlying analysis suggests some interesting considerations on the genericity of steepness. Moreover, this work represents a first step towards the construction of sufficient conditions for steepness involving the derivatives of the studied function up to an arbitrary order.

Un système hamiltonien presque intégrable est stable sur un temps exponentiellement long s’il est holomorphe et si sa partie intégrable satisfait à une propriété géométrique générique dite d’escarpement (steepness). Suivant une stratégie développée par Nekhoroshev, on donne des conditions algébriques suffisantes pour garantir qu’une fonction donnée est escarpée, ce qui est important en vue des applications, notamment en mécanique céleste. Ces conditions portent sur les dérivées jusqu’à l’ordre cinq de la fonction étudiée. L’étude de la théorie sous-jacente permet des considérations intéressantes sur la généricité de la propriété d’escarpement. De plus, ce travail représente un premier pas vers la construction de conditions qui garantissent l’escarpement d’une fonction donnée et qui portent sur ses dérivées à un ordre arbitraire.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1723

Santiago Barbieri 1

1 Institut de Mathématiques d’Orsay - Université Paris Saclay, Bât. 307, Rue Michel Magat, 91400 Orsay, France — Dipartimento di Matematica e Fisica - Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 1, Palazzina C, 00146 Roma, Italy — Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_5_1365_0,
     author = {Santiago Barbieri},
     title = {On the algebraic properties of exponentially stable integrable hamiltonian systems},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1365--1390},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {5},
     year = {2022},
     doi = {10.5802/afst.1723},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1723/}
}
TY  - JOUR
AU  - Santiago Barbieri
TI  - On the algebraic properties of exponentially stable integrable hamiltonian systems
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1365
EP  - 1390
VL  - 31
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1723/
DO  - 10.5802/afst.1723
LA  - en
ID  - AFST_2022_6_31_5_1365_0
ER  - 
%0 Journal Article
%A Santiago Barbieri
%T On the algebraic properties of exponentially stable integrable hamiltonian systems
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1365-1390
%V 31
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1723/
%R 10.5802/afst.1723
%G en
%F AFST_2022_6_31_5_1365_0
Santiago Barbieri. On the algebraic properties of exponentially stable integrable hamiltonian systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1365-1390. doi : 10.5802/afst.1723. https://afst.centre-mersenne.org/articles/10.5802/afst.1723/

[1] Vladimir Arnol’d Instability of dynamical systems with several degrees of freedom, Sov. Math., Dokl. (1964) no. 5, pp. 581-585 | Zbl

[2] Vladimir Arnol’d; Valery Kozlov; Antoly I. Neishtadt; Evgeniĭ Khukhro Mathematical Aspects of Classical and Celestial Mechanics, Springer, 2010

[3] Abed Bounemoura; Bassam Fayad; Laurent Niederman Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems, Commun. Math. Phys., Volume 350 (2017) no. 1, pp. 361-386 | DOI | MR | Zbl

[4] Abed Bounemoura; Vadim Kaloshin Generic fast diffusion for a class of non-convex hamiltonians with two degrees of freedom, Mosc. Math. J., Volume 14 (2014) no. 2, pp. 181-203 | DOI | MR | Zbl

[5] Luigi Chierchia Kolmogorov’s 1954 paper on nearly-integrable Hamiltonian systems, Regul. Chaotic Dyn., Volume 13 (2008), pp. 130-139 | DOI | Zbl

[6] Luigi Chierchia; M. Faraggiana; Massimiliano Guzzo On steepness of 3-jet non-degenerate functions, Ann. Mat. Pura Appl., Volume 198 (2019) no. 6, pp. 2151-2165 | DOI | MR | Zbl

[7] Massimiliano Guzzo; Alessandro Morbidelli Construction of a Nekhoroshev like result for the asteroid belt dynamical system, Celest. Mech. Dyn. Astron., Volume 66 (1997) no. 3, pp. 255-292 | DOI | MR | Zbl

[8] Jean-Pierre Marco; David Sauzin Stability and instability for Gevrey quasi-convex near-integrable hamiltonian systems, Publ. Math., Inst. Hautes Étud. Sci. (2003) no. 96, pp. 199-275 | DOI | Numdam | MR | Zbl

[9] Nikolaĭ N. Nekhoroshev Stable lower estimates for smooth mapping and for gradients of smooth functions, Math. USSR, Sb., Volume 19 (1973) no. 3, pp. 425-467

[10] Nikolaĭ N. Nekhoroshev An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. I, Russ. Math. Surv., Volume 32 (1977) no. 6, pp. 1-65 | DOI | MR | Zbl

[11] Nikolaĭ N. Nekhoroshev An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. II, Topics in Modern Mathematics, Petrovskii Seminar (1979) no. 5, pp. 5-50 | MR

[12] Laurent Niederman Hamiltonian stability and subanalytic geometry, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 795-813 | DOI | Numdam | MR | Zbl

[13] Laurent Niederman Prevalence of exponential stability among nearly integrable Hamiltonian systems, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 3, pp. 905-928 | DOI | MR | Zbl

[14] Gabriella Pinzari Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., Volume 18 (2013) no. 6, pp. 860-906 | DOI | MR | Zbl

[15] Gabriella Schirinzi; Massimiliano Guzzo On the formulation of new explicit conditions for steepness from a former result of N.N. Nekhoroshev, J. Math. Phys., Volume 54 (2013) no. 7, 072702, 23 pages | MR | Zbl

Cited by Sources: