We give a proof of the well-known fact that the -module of smooth functions is flat by means of residue theory and integral formulas. A variant of the proof gives a similar result for classes of functions of lower regularity. We also prove a Briançon–Skoda type theorem for ideals of the form , where is an ideal in .
Nous donnons une preuve du fait bien connu que le -module des fonctions lisses est plat au moyen de la théorie des résidus et des formules intègrales. Une variante de la preuve donne une résultat similaire pour classes de fonctions de moindre régularité. Nous prouvons également un théorème de type Briançon-Skoda pour des idéaux de la forme , où est un idéal dans .
Accepted:
Published online:
Mats Andersson 1
@article{AFST_2023_6_32_1_1_0, author = {Mats Andersson}, title = {The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1--14}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1725}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1725/} }
TY - JOUR AU - Mats Andersson TI - The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 1 EP - 14 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1725/ DO - 10.5802/afst.1725 LA - en ID - AFST_2023_6_32_1_1_0 ER -
%0 Journal Article %A Mats Andersson %T The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 1-14 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1725/ %R 10.5802/afst.1725 %G en %F AFST_2023_6_32_1_1_0
Mats Andersson. The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 1-14. doi : 10.5802/afst.1725. https://afst.centre-mersenne.org/articles/10.5802/afst.1725/
[1] Integral representation with weights I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl
[2] Ideals of smooth functions and residue currents, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 76-88 | DOI | MR | Zbl
[3] Explicit versions of the Briançon-Skoda theorem with variations, Mich. Math. J., Volume 54 (2006) no. 2, pp. 361-373 | Zbl
[4] Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl
[5] -estimates of holomorphic division formulas, Pac. J. Math., Volume 173 (1996) no. 2, pp. 307-335 | DOI | MR | Zbl
[6] Explicit representation of membership in polynomial ideals, Math. Ann., Volume 349 (2011) no. 2, pp. 345-365 | DOI | MR | Zbl
[7] On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier, Volume 60 (2010) no. 2, pp. 417-432 | DOI | Numdam | Zbl
[8] Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | DOI | Numdam | MR | Zbl
[9] Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser, 1993 | DOI
[10] Effective Bezout identities in , Acta Math., Volume 166 (1991) no. 1-2, pp. 69-120 | DOI | MR | Zbl
[11] A formula for division and interpolation, Math. Ann., Volume 263 (1983), pp. 399-418 | DOI | MR | Zbl
[12] Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal., Volume 84 (1989) no. 2, pp. 358-372 | DOI | MR | Zbl
[13] Uniform bounds in Noetherian rings, Invent. Math., Volume 107 (1992) no. 1, pp. 203-223 | DOI | MR | Zbl
[14] Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, 3, Oxford University Press, 1966
[15] Residue current approach to Ehrenpreis-Malgrange type theorem for linear differential equations with constant coefficients and commensurate time lags, Adv. Math., Volume 331 (2018), pp. 170-208 | DOI | MR | Zbl
[16] Formules de division dans , Mich. Math. J., Volume 51 (2003) no. 2, pp. 251-277 | MR | Zbl
[17] Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand., Volume 62 (1988) no. 1, pp. 75-152 | DOI | MR | Zbl
[18] Explicit Serre duality on complex spaces, Adv. Math., Volume 305 (2017), pp. 1320-1355 | DOI | MR | Zbl
[19] Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de ., C. R. Acad. Sci. Paris, Volume 278 (1974), pp. 949-951 | Zbl
Cited by Sources: