logo AFST
The flatness of the 𝒪-module of smooth functions and integral representation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 1-14.

Nous donnons une preuve du fait bien connu que le 𝒪-module des fonctions lisses est plat au moyen de la théorie des résidus et des formules intègrales. Une variante de la preuve donne une résultat similaire pour classes de fonctions de moindre régularité. Nous prouvons également un théorème de type Briançon-Skoda pour des idéaux de la forme a, où a est un idéal dans 𝒪.

We give a proof of the well-known fact that the 𝒪-module of smooth functions is flat by means of residue theory and integral formulas. A variant of the proof gives a similar result for classes of functions of lower regularity. We also prove a Briançon–Skoda type theorem for ideals of the form a, where a is an ideal in 𝒪.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1725
Mats Andersson 1

1 Department of Mathematics Chalmers University of Technology and University of Gothenburg S-412 96 Göteborg, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_1_1_0,
     author = {Mats Andersson},
     title = {The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--14},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1725},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1725/}
}
TY  - JOUR
AU  - Mats Andersson
TI  - The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 1
EP  - 14
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1725/
DO  - 10.5802/afst.1725
LA  - en
ID  - AFST_2023_6_32_1_1_0
ER  - 
%0 Journal Article
%A Mats Andersson
%T The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 1-14
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1725/
%R 10.5802/afst.1725
%G en
%F AFST_2023_6_32_1_1_0
Mats Andersson. The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 1-14. doi : 10.5802/afst.1725. https://afst.centre-mersenne.org/articles/10.5802/afst.1725/

[1] Mats Andersson Integral representation with weights I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl

[2] Mats Andersson Ideals of smooth functions and residue currents, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 76-88 | DOI | MR | Zbl

[3] Mats Andersson Explicit versions of the Briançon-Skoda theorem with variations, Mich. Math. J., Volume 54 (2006) no. 2, pp. 361-373 | Zbl

[4] Mats Andersson Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl

[5] Mats Andersson; Hasse Carlsson H p -estimates of holomorphic division formulas, Pac. J. Math., Volume 173 (1996) no. 2, pp. 307-335 | DOI | MR | Zbl

[6] Mats Andersson; Elin Götmark Explicit representation of membership in polynomial ideals, Math. Ann., Volume 349 (2011) no. 2, pp. 345-365 | DOI | MR | Zbl

[7] Mats Andersson; Håkan Samuelsson; Jacob Sznajdman On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier, Volume 60 (2010) no. 2, pp. 417-432 | DOI | Numdam | Zbl

[8] Mats Andersson; Elizabeth Wulcan Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | DOI | Numdam | MR | Zbl

[9] Carlos A. Berenstein; Roger Gay; Alekos Vidras; Alain Yger Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser, 1993 | DOI

[10] Carlos A. Berenstein; Alain Yger Effective Bezout identities in [z 1 ,...,z n ], Acta Math., Volume 166 (1991) no. 1-2, pp. 69-120 | DOI | MR | Zbl

[11] Bo Berndtsson A formula for division and interpolation, Math. Ann., Volume 263 (1983), pp. 399-418 | DOI | MR | Zbl

[12] Bo Berndtsson; Mikael Passare Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal., Volume 84 (1989) no. 2, pp. 358-372 | DOI | MR | Zbl

[13] Craig Huneke Uniform bounds in Noetherian rings, Invent. Math., Volume 107 (1992) no. 1, pp. 203-223 | DOI | MR | Zbl

[14] Bernard Malgrange Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, 3, Oxford University Press, 1966

[15] Saiei-Jaeyeong Matsubara-Heo Residue current approach to Ehrenpreis-Malgrange type theorem for linear differential equations with constant coefficients and commensurate time lags, Adv. Math., Volume 331 (2018), pp. 170-208 | DOI | MR | Zbl

[16] Emmanuel Mazzilli Formules de division dans n , Mich. Math. J., Volume 51 (2003) no. 2, pp. 251-277 | MR | Zbl

[17] Mikael Passare Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand., Volume 62 (1988) no. 1, pp. 75-152 | DOI | MR | Zbl

[18] Jean Ruppenthal; Håkan Samuelsson Kalm; Elizabeth Wulcan Explicit Serre duality on complex spaces, Adv. Math., Volume 305 (2017), pp. 1320-1355 | DOI | MR | Zbl

[19] Henri Skoda; Joel Briancon Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de n ., C. R. Acad. Sci. Paris, Volume 278 (1974), pp. 949-951 | Zbl

Cité par Sources :