Irrational pencils and Betti numbers
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 55-67.

We study irrational pencils with isolated critical points on compact aspherical complex manifolds. We prove that if the set of critical points is nonempty, the homology of the kernel of the morphism induced by the pencil on fundamental groups is not finitely generated. This generalizes a result by Dimca, Papadima and Suciu. By considering self-products of the Cartwright–Steger surface, this allows us to build new examples of smooth projective varieties whose fundamental group has a non-finitely generated homology.

Nous étudions les pinceaux irrationnels à points critiques isolés sur les variétés complexes compactes et asphériques. Nous prouvons que si un tel pinceau possède au moins un point critique, alors l’homologie du noyau du morphisme induit entre groupes fondamentaux n’est pas de type fini. Ceci généralise un résultat de Dimca, Papadima et Suciu. En considérant le produit de plusieurs copies de la surface de Cartwright–Steger, ceci nous permet de donner de nouveaux exemples de variétés projectives lisses dont le groupe fondamental a un groupe d’homologie qui n’est pas de type fini.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1727

Francisco Nicolás 1; Pierre Py 1

1 IRMA, Université de Strasbourg, 67084 Strasbourg, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_1_55_0,
     author = {Francisco Nicol\'as and Pierre Py},
     title = {Irrational pencils and {Betti} numbers},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {55--67},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1727},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1727/}
}
TY  - JOUR
AU  - Francisco Nicolás
AU  - Pierre Py
TI  - Irrational pencils and Betti numbers
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 55
EP  - 67
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1727/
DO  - 10.5802/afst.1727
LA  - en
ID  - AFST_2023_6_32_1_55_0
ER  - 
%0 Journal Article
%A Francisco Nicolás
%A Pierre Py
%T Irrational pencils and Betti numbers
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 55-67
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1727/
%R 10.5802/afst.1727
%G en
%F AFST_2023_6_32_1_55_0
Francisco Nicolás; Pierre Py. Irrational pencils and Betti numbers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 55-67. doi : 10.5802/afst.1727. https://afst.centre-mersenne.org/articles/10.5802/afst.1727/

[1] Mladen Bestvina; Noel Brady Morse theory and finiteness properties of groups, Invent. Math., Volume 129 (1997) no. 3, pp. 445-470 | DOI | MR | Zbl

[2] Robert Bieri Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Queen Mary College, 1976 | MR

[3] Indranil Biswas; Mahan Mj; Dishant Pancholi Homotopical height, Int. J. Math., Volume 25 (2014) no. 13, 1450123, 43 pages | MR | Zbl

[4] Noel Brady Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. Lond. Math. Soc., Volume 60 (1999) no. 2, pp. 461-480 | DOI | MR | Zbl

[5] Martin R. Bridson; James Howie; Charles F. Miller; Hamish Short The subgroups of direct products of surface groups, Geom. Dedicata, Volume 92 (2002), pp. 95-103 | DOI | MR | Zbl

[6] Martin R. Bridson; Claudio Llosa Isenrich Kodaira fibrations, Kähler groups, and finiteness properties, Trans. Am. Math. Soc., Volume 372 (2019) no. 8, pp. 5869-5890 | DOI | Zbl

[7] Kenneth S. Brown Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI

[8] Donald I. Cartwright; Vincent Koziarz; Sai-Kee Yeung On the Cartwright-Steger surface, J. Algebr. Geom., Volume 26 (2017) no. 4, pp. 655-689 | DOI | MR | Zbl

[9] Donald I. Cartwright; Tim Steger Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 1, pp. 1-2 | Numdam | MR | Zbl

[10] Alexandru Dimca Singularities and topology of hypersurfaces, Universitext, Springer, 1992 | DOI

[11] Alexandru Dimca; Ştefan Papadima; Alexander I. Suciu Non-finiteness properties of fundamental groups of smooth projective varieties, J. Reine Angew. Math., Volume 629 (2009), pp. 89-105 | MR | Zbl

[12] Wolfgang Ebeling Functions of several complex variables and their singularities, Graduate Studies in Mathematics, 83, American Mathematical Society, 2007

[13] Michael Kapovich On normal subgroups in the fundamental groups of complex surfaces (1998) (https://arxiv.org/abs/math/9808085)

[14] János Kollár Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995 | DOI

[15] Vincent Koziarz; Sai-Kee Yeung Stability of the Albanese fibration on the Cartwright-Steger surface, Taiwanese J. Math., Volume 25 (2021) no. 2, pp. 251-256 | MR | Zbl

[16] Robert Kropholler Almost hyperbolic groups with almost finitely presented subgroups (2018) (https://arxiv.org/abs/1802.01658)

[17] Claudio Llosa Isenrich Branched covers of elliptic curves and Kähler groups with exotic finiteness properties, Ann. Inst. Fourier, Volume 69 (2019) no. 1, pp. 335-363 | DOI | Numdam | MR | Zbl

[18] Claudio Llosa Isenrich Kähler groups and subdirect products of surface groups, Geom. Topol., Volume 24 (2020) no. 2, pp. 971-1017 | DOI | MR | Zbl

[19] John W. Milnor Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, University of Tokyo Press, 1968

[20] John R. Stallings A finitely presented group whose 3-dimensional integral homology is not finitely generated, Am. J. Math., Volume 85 (1963), pp. 541-543 | DOI | MR | Zbl

[21] Matthew Stover On general type surfaces with q=1 and c 2 =3p g , Manuscr. Math., Volume 159 (2019) no. 1, pp. 171-182 | DOI | MR | Zbl

[22] Stefano Vidussi The slope of surfaces with Albanese dimension one, Math. Proc. Camb. Philos. Soc., Volume 167 (2019) no. 2, pp. 355-360 | DOI | MR | Zbl

[23] Claire Voisin Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés (Paris), 10, Société Mathématique de France, 2002

[24] Charles T. C. Wall Finiteness conditions for CW-complexes. I, Ann. Math. (2), Volume 81 (1965), pp. 56-69 | DOI | MR | Zbl

Cited by Sources: