About relative polar varieties and Brasselet numbers
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 69-80.

In this work, we study the consequences of an empty polar variety on the topology of a function-germ with (possibly) nonisolated singularities defined on a singular variety.

Dans ce travail, nous étudions les conséquences d’une variété polaire vide sur le topologie d’une germe de fonction avec (possiblement) des singularités non isolées définies sur une variété singulière

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1729
Keywords: Euler obstruction, polar varieties, Brasselet number

Hellen Santana 1

1 Instituto de Ciências Matemáticas e de Computação (Universidade de São Paulo) - Avenida Trabalhador São Carlense, 400, São Carlos (SP) Brasil
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_1_69_0,
     author = {Hellen Santana},
     title = {About relative polar varieties and {Brasselet} numbers},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {69--80},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1729},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1729/}
}
TY  - JOUR
AU  - Hellen Santana
TI  - About relative polar varieties and Brasselet numbers
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 69
EP  - 80
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1729/
DO  - 10.5802/afst.1729
LA  - en
ID  - AFST_2023_6_32_1_69_0
ER  - 
%0 Journal Article
%A Hellen Santana
%T About relative polar varieties and Brasselet numbers
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 69-80
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1729/
%R 10.5802/afst.1729
%G en
%F AFST_2023_6_32_1_69_0
Hellen Santana. About relative polar varieties and Brasselet numbers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 69-80. doi : 10.5802/afst.1729. https://afst.centre-mersenne.org/articles/10.5802/afst.1729/

[1] Jean-Paul Brasselet; Dũng Tráng Lê; José Seade Euler obstruction and indices of vector fields, Topology, Volume 39 (2000) no. 6, pp. 1193-1208 | DOI | MR | Zbl

[2] Jean-Paul Brasselet; David B. Massey; A. J. Parameswaran; José Seade Euler obstruction and defects of functions on singular varieties, J. Lond. Math. Soc., Volume 70 (2004) no. 1, pp. 59-76 | DOI | MR | Zbl

[3] Nicolas Dutertre; Nivaldo G. Grulha Lê-Greuel type formula for the Euler obstruction and applications, Adv. Math., Volume 251 (2014), pp. 127-146 | DOI | MR | Zbl

[4] Gert-Martin Greuel Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann., Volume 214 (1975) no. 3, pp. 235-266 | DOI | Zbl

[5] Helmut Hamm Lokale topologische Eigenschaften komplexer Räume, Math. Ann., Volume 191 (1971), pp. 235-252 | DOI | MR | Zbl

[6] I. N. Iomdin Complex surfaces with a one-dimensional set of singularities, Sib. Math. J., Volume 15 (1974) no. 5, pp. 748-762 | DOI | MR | Zbl

[7] Dũng Tráng Lê Calcul du nombre de Milnor d’une singularité isolée d’intersection compléte, 1973 (Centre de Mathematiques de l’Ecole Polytechnique)

[8] Dũng Tráng Lê; Bernard Teissier Variétés polaires locales et classes de Chern des variétés singulières, Ann. Math., Volume 114 (1981) no. 3, pp. 457-491 | DOI | Zbl

[9] François Loeser Formules intégrales pour certains invariants locaux des espaces analytiques complexes, Comment. Math. Helv., Volume 59 (1984) no. 2, pp. 204-225 | DOI | Zbl

[10] Robert D. MacPherson Chern classes for singular algebraic varieties, Ann. Math., Volume 100 (1974), pp. 423-432 | DOI | MR | Zbl

[11] David B. Massey Hypercohomology of Milnor Fibers, Topology, Volume 35 (1996) no. 4, pp. 969-1003 | DOI | Zbl

[12] David B. Massey Numerical control over complex analytic singularities, Memoirs of the American Mathematical Society, 778, American Mathematical Society, 2003

[13] David B. Massey Enriched relative polar curves and discriminants, Singularities I. Algebraic and analytic aspects (Contemporary Mathematics), Volume 474, American Mathematical Society, 2008, pp. 107-144 | MR | Zbl

[14] David B. Massey IPA-deformations of functions on affine space, Hokkaido Math. J., Volume 47 (2018) no. 3, pp. 655-676 | MR | Zbl

[15] John W. Milnor Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 25, Princeton University Press, 1968

[16] José Seade; Mihai Tibăr; Alberto Verjovsky Milnor numbers and Euler obstruction, Bull. Braz. Math. Soc. (N.S.), Volume 39 (2005) no. 2, pp. 275-283 | DOI | MR | Zbl

[17] Bernard Teissier Introduction to equisingularity problems, Algebraic Geometry Symposium (Arcata, 1974) (Proceedings of Symposia in Pure Mathematics), Volume 29, American Mathematical Society, 1975, pp. 593-632 | DOI | Zbl

[18] Bernard Teissier Variétés polaires. II: Multiplicités polaires, sections planes et conditions de Whitney, Algebraic geometry (La Rábida, 1981) (Lecture Notes in Mathematics), Volume 961, Springer, 1982, pp. 314-491 | DOI | Zbl

Cited by Sources: