We consider a two-dimensional nonlinear Schrödinger equation proposed in Physics to model rotational binary Bose–Einstein condensates. The nonlinearity is a logarithmic modification of the usual cubic nonlinearity. The presence of both the external confining potential and rotating frame makes it difficult to apply standard techniques to directly construct ground states, as we explain in an appendix. The goal of the present paper is to analyze the orbital stability of the set of energy minimizers under mass constraint, according to the relative strength of the confining potential compared to the angular frequency. The main novelty concerns the critical case where these two effects compensate exactly (lowest Landau Level): orbital stability is established by using techniques related to magnetic Schrödinger operators.
Nous considérons une équation de Schrödinger non linéaire en deux dimensions d’espace, introduite en physique pour modéliser les condensats de Bose–Einstein en rotation. La non-linéarité est une modification logarithmique du terme cubique habituel. Les présences conjuguées d’un potentiel confinant et d’un repère tournant font qu’il est difficile d’appliquer les techniques standard dans la construction d’états fondamentaux, comme expliqué en appendice. Le but de ce papier est d’analyser la stabilité orbitale de l’ensemble des minimiseurs d’énergie à masse fixée, selon la valeur relative de la force du potentiel confinant par rapport à la vitesse de rotation. La nouveauté principale concerne le cas critique où les deux effets se compensent exactement (niveau fondamental de Landau) : la stabilité orbitale est démontrée en utilisant des techniques en lien avec les opérateurs de Schrödinger magnétiques.
Accepted:
Published online:
Keywords: Nonlinear Schrödinger equation, Bose–Einstein condensate, Harmonic potential, Rotation, Standing waves, Stability, Magnetic Schrödinger operators
Mot clés : Équations de Schrödinger non linéaires, condensation de Bose–Einstein, potentiel harmonique, rotation, états stationnaires, stabilité, opérateur de Schrödinger magnétique
Rémi Carles 1; Van Duong Dinh 2; Hichem Hajaiej 3
@article{AFST_2023_6_32_1_81_0, author = {R\'emi Carles and Van Duong Dinh and Hichem Hajaiej}, title = {On stability of rotational {2D} binary {Bose{\textendash}Einstein} condensates}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {81--124}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1730}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1730/} }
TY - JOUR AU - Rémi Carles AU - Van Duong Dinh AU - Hichem Hajaiej TI - On stability of rotational 2D binary Bose–Einstein condensates JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 81 EP - 124 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1730/ DO - 10.5802/afst.1730 LA - en ID - AFST_2023_6_32_1_81_0 ER -
%0 Journal Article %A Rémi Carles %A Van Duong Dinh %A Hichem Hajaiej %T On stability of rotational 2D binary Bose–Einstein condensates %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 81-124 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1730/ %R 10.5802/afst.1730 %G en %F AFST_2023_6_32_1_81_0
Rémi Carles; Van Duong Dinh; Hichem Hajaiej. On stability of rotational 2D binary Bose–Einstein condensates. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 81-124. doi : 10.5802/afst.1730. https://afst.centre-mersenne.org/articles/10.5802/afst.1730/
[1] Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67, Springer, 2006 | DOI
[2] On nonlinear Schrödinger-type equations with nonlinear damping, Int. Math. Res. Not. (2015) no. 3, pp. 740-762 | DOI | MR | Zbl
[3] On the Cauchy problem for nonlinear Schrödinger equations with rotation, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 3, pp. 703-715 | DOI | MR | Zbl
[4] Global well-posedness for cubic NLS with nonlinear damping, Commun. Partial Differ. Equations, Volume 35 (2010) no. 12, pp. 2310-2328 | DOI | MR | Zbl
[5] Stability and instability properties of rotating Bose-Einstein condensates, Lett. Math. Phys., Volume 109 (2019) no. 6, pp. 1415-1432 | DOI | MR | Zbl
[6] Ground states and dynamics of rotating Bose–Einstein condensates, Transport phenomena and kinetic theory (Modeling and Simulation in Science, Engineering and Technology), Birkhäuser, 2007, pp. 215-255 | DOI | MR | Zbl
[7] Ground, symmetric and central vortex states in rotating Bose–Einstein condensates, Commun. Math. Sci., Volume 3 (2005) no. 1, pp. 57-88 | MR | Zbl
[8] Threshold for Blowup and Stability for Nonlinear Schrödinger Equation with Rotation (2020) (to appear in Ann. Henri Poincaré, https://doi.org/10.1007/s00023-022-01249-y)
[9] Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Math. Acad. Sci. Paris, Volume 297 (1983) no. 5, pp. 307-310 | MR | Zbl
[10] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | DOI | MR | Zbl
[11] On the global Cauchy problem for non-linear Schrödinger equation with magnetic potential (preprint)
[12] Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science, Volume 359 (2018) no. 6373, pp. 301-304 | DOI | MR
[13] Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 9 (2011) no. 4, pp. 937-964 | DOI | Zbl
[14] Sharp weights in the Cauchy problem for nonlinear Schrödinger equations with potential, Z. Angew. Math. Phys., Volume 66 (2015) no. 4, pp. 2087-2094 | DOI | Zbl
[15] Large time behavior in nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 13 (2015) no. 2, pp. 443-460 | DOI | Zbl
[16] On an intercritical log-modified nonlinear Schrödinger equation in two spatial dimensions (to appear in Proc. Am. Math. Soc., https://doi.org/10.1090/proc/15636)
[17] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, 2003, xiv+323 pages | DOI | MR
[18] Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I (Progress in Nonlinear Differential Equations and their Applications), Volume 1, Birkhäuser, 1989, pp. 401-449 | MR | Zbl
[19] Observation of Quantum Droplets in a Strongly Dipolar Bose Gas, Phys. Rev. Lett., Volume 116 (2016), p. 215301 | DOI
[20] Liquid quantum droplets of ultracold magnetic atoms, J. Phys. B: At. Mol. Opt. Phys., Volume 49 (2016) no. 21, p. 214004 | DOI
[21] Remarks on the convergence of the Feynman path integrals, Duke Math. J., Volume 47 (1980) no. 3, pp. 559-600 | MR | Zbl
[22] Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dyn. Syst., Volume 7 (2001) no. 3, pp. 525-544 | DOI | MR | Zbl
[23] On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys., Volume 104 (2014) no. 2, pp. 141-156 | DOI | MR | Zbl
[24] On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation, Adv. Nonlinear Stud., Volume 4 (2004) no. 4, pp. 469-501 | DOI | MR | Zbl
[25] Observing the Rosensweig instability of a quantum ferrofluid, Nature, Volume 530 (2016) no. 7589, pp. 194-197 | DOI
[26] On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 1, pp. 193-226 | MR | Zbl
[27] Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev., Volume 106 (1957), pp. 1135-1145 | DOI | MR
[28] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001, xxii+346 pages | DOI | MR
[29] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | MR | Zbl
[30] The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR
[31] Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 3, pp. 403-408 | DOI | MR | Zbl
[32] Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer, 1991 | DOI
[33] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978, xv+396 pages | MR
[34] On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, Volume 30 (1988) no. 1-2, pp. 207-218 | DOI | MR | Zbl
[35] Self-bound droplets of a dilute magnetic quantum liquid, Nature, Volume 539 (2016) no. 7628, pp. 259-262 | DOI
[36] Self-Bound Quantum Droplets of Atomic Mixtures in Free Space, Phys. Rev. Lett., Volume 120 (2018), 235301 | DOI
[37] Rotating Binary Bose–Einstein Condensates and Vortex Clusters in Quantum Droplets, Phys. Rev. Lett., Volume 123 (2019), p. 160405 | DOI
[38] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1983) no. 4, pp. 567-576 | DOI | MR | Zbl
Cited by Sources: