On stability of rotational 2D binary Bose–Einstein condensates
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 81-124.

We consider a two-dimensional nonlinear Schrödinger equation proposed in Physics to model rotational binary Bose–Einstein condensates. The nonlinearity is a logarithmic modification of the usual cubic nonlinearity. The presence of both the external confining potential and rotating frame makes it difficult to apply standard techniques to directly construct ground states, as we explain in an appendix. The goal of the present paper is to analyze the orbital stability of the set of energy minimizers under mass constraint, according to the relative strength of the confining potential compared to the angular frequency. The main novelty concerns the critical case where these two effects compensate exactly (lowest Landau Level): orbital stability is established by using techniques related to magnetic Schrödinger operators.

Nous considérons une équation de Schrödinger non linéaire en deux dimensions d’espace, introduite en physique pour modéliser les condensats de Bose–Einstein en rotation. La non-linéarité est une modification logarithmique du terme cubique habituel. Les présences conjuguées d’un potentiel confinant et d’un repère tournant font qu’il est difficile d’appliquer les techniques standard dans la construction d’états fondamentaux, comme expliqué en appendice. Le but de ce papier est d’analyser la stabilité orbitale de l’ensemble des minimiseurs d’énergie à masse fixée, selon la valeur relative de la force du potentiel confinant par rapport à la vitesse de rotation. La nouveauté principale concerne le cas critique où les deux effets se compensent exactement (niveau fondamental de Landau) : la stabilité orbitale est démontrée en utilisant des techniques en lien avec les opérateurs de Schrödinger magnétiques.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1730
Classification: 35Q55, 35A01
Keywords: Nonlinear Schrödinger equation, Bose–Einstein condensate, Harmonic potential, Rotation, Standing waves, Stability, Magnetic Schrödinger operators
Mot clés : Équations de Schrödinger non linéaires, condensation de Bose–Einstein, potentiel harmonique, rotation, états stationnaires, stabilité, opérateur de Schrödinger magnétique

Rémi Carles 1; Van Duong Dinh 2; Hichem Hajaiej 3

1 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, FRANCE
2 Laboratoire Paul Painlevé UMR 8524, Université de Lille CNRS, 59655 Villeneuve d’Asc, France and Department of Mathematics, HCMC University of Education, 280 An Duong Vuong, Ho Chi Minh, Vietnam
3 Department of Mathematics, California State University, Los Angeles, CA 90032
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_1_81_0,
     author = {R\'emi Carles and Van Duong Dinh and Hichem Hajaiej},
     title = {On stability of rotational {2D} binary {Bose{\textendash}Einstein} condensates},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {81--124},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1730},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1730/}
}
TY  - JOUR
AU  - Rémi Carles
AU  - Van Duong Dinh
AU  - Hichem Hajaiej
TI  - On stability of rotational 2D binary Bose–Einstein condensates
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 81
EP  - 124
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1730/
DO  - 10.5802/afst.1730
LA  - en
ID  - AFST_2023_6_32_1_81_0
ER  - 
%0 Journal Article
%A Rémi Carles
%A Van Duong Dinh
%A Hichem Hajaiej
%T On stability of rotational 2D binary Bose–Einstein condensates
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 81-124
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1730/
%R 10.5802/afst.1730
%G en
%F AFST_2023_6_32_1_81_0
Rémi Carles; Van Duong Dinh; Hichem Hajaiej. On stability of rotational 2D binary Bose–Einstein condensates. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 81-124. doi : 10.5802/afst.1730. https://afst.centre-mersenne.org/articles/10.5802/afst.1730/

[1] Amandine Aftalion Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67, Springer, 2006 | DOI

[2] Paolo Antonelli; Rémi Carles; Christof Sparber On nonlinear Schrödinger-type equations with nonlinear damping, Int. Math. Res. Not. (2015) no. 3, pp. 740-762 | DOI | MR | Zbl

[3] Paolo Antonelli; Daniel Marahrens; Christof Sparber On the Cauchy problem for nonlinear Schrödinger equations with rotation, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 3, pp. 703-715 | DOI | MR | Zbl

[4] Paolo Antonelli; Christof Sparber Global well-posedness for cubic NLS with nonlinear damping, Commun. Partial Differ. Equations, Volume 35 (2010) no. 12, pp. 2310-2328 | DOI | MR | Zbl

[5] Jack Arbunich; Irina Nenciu; Christof Sparber Stability and instability properties of rotating Bose-Einstein condensates, Lett. Math. Phys., Volume 109 (2019) no. 6, pp. 1415-1432 | DOI | MR | Zbl

[6] Weizhu Bao Ground states and dynamics of rotating Bose–Einstein condensates, Transport phenomena and kinetic theory (Modeling and Simulation in Science, Engineering and Technology), Birkhäuser, 2007, pp. 215-255 | DOI | MR | Zbl

[7] Weizhu Bao; Hanquan Wang; Peter A. Markowich Ground, symmetric and central vortex states in rotating Bose–Einstein condensates, Commun. Math. Sci., Volume 3 (2005) no. 1, pp. 57-88 | MR | Zbl

[8] Nyla Basharat; Hichem Hajaiej; Yi Hu; Shijun Zheng Threshold for Blowup and Stability for Nonlinear Schrödinger Equation with Rotation (2020) (to appear in Ann. Henri Poincaré, https://doi.org/10.1007/s00023-022-01249-y)

[9] Henri Berestycki; Thierry Gallouët; Otared Kavian Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Math. Acad. Sci. Paris, Volume 297 (1983) no. 5, pp. 307-310 | MR | Zbl

[10] Henri Berestycki; Pierre-Louis Lions Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | DOI | MR | Zbl

[11] Nabile Boussaïd; Hichem Hajaiej; Slim Ibrahim; Michel Laurent On the global Cauchy problem for non-linear Schrödinger equation with magnetic potential (preprint)

[12] C. R. Cabrera; L. Tanzi; J. Sanz; B. Naylor; P. Thomas; P. Cheiney; L. Tarruell Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science, Volume 359 (2018) no. 6373, pp. 301-304 | DOI | MR

[13] Rémi Carles Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 9 (2011) no. 4, pp. 937-964 | DOI | Zbl

[14] Rémi Carles Sharp weights in the Cauchy problem for nonlinear Schrödinger equations with potential, Z. Angew. Math. Phys., Volume 66 (2015) no. 4, pp. 2087-2094 | DOI | Zbl

[15] Rémi Carles; J. Drumond Silva Large time behavior in nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 13 (2015) no. 2, pp. 443-460 | DOI | Zbl

[16] Rémi Carles; Christof Sparber On an intercritical log-modified nonlinear Schrödinger equation in two spatial dimensions (to appear in Proc. Am. Math. Soc., https://doi.org/10.1090/proc/15636)

[17] Thierry Cazenave Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, 2003, xiv+323 pages | DOI | MR

[18] Maria J. Esteban; Pierre-Louis Lions Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I (Progress in Nonlinear Differential Equations and their Applications), Volume 1, Birkhäuser, 1989, pp. 401-449 | MR | Zbl

[19] Igor Ferrier-Barbut; Holger Kadau; Matthias Schmitt; Matthias Wenzel; Tilman Pfau Observation of Quantum Droplets in a Strongly Dipolar Bose Gas, Phys. Rev. Lett., Volume 116 (2016), p. 215301 | DOI

[20] Igor Ferrier-Barbut; Matthias Schmitt; Matthias Wenzel; Holger Kadau; Tilman Pfau Liquid quantum droplets of ultracold magnetic atoms, J. Phys. B: At. Mol. Opt. Phys., Volume 49 (2016) no. 21, p. 214004 | DOI

[21] Daisuke Fujiwara Remarks on the convergence of the Feynman path integrals, Duke Math. J., Volume 47 (1980) no. 3, pp. 559-600 | MR | Zbl

[22] Reika Fukuizumi Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dyn. Syst., Volume 7 (2001) no. 3, pp. 525-544 | DOI | MR | Zbl

[23] Yujin Guo; Robert Seiringer On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys., Volume 104 (2014) no. 2, pp. 141-156 | DOI | MR | Zbl

[24] Hichem Hajaiej; Charles A. Stuart On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation, Adv. Nonlinear Stud., Volume 4 (2004) no. 4, pp. 469-501 | DOI | MR | Zbl

[25] Holger Kadau; Matthias Schmitt; Matthias Wenzel; Clarissa Wink; Thomas Maier; Igor Ferrier-Barbut; Tilman Pfau Observing the Rosensweig instability of a quantum ferrofluid, Nature, Volume 530 (2016) no. 7589, pp. 194-197 | DOI

[26] Hitoshi Kitada On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 1, pp. 193-226 | MR | Zbl

[27] Tsung-Dao Lee; Kerson Huang; Chen N. Yang Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev., Volume 106 (1957), pp. 1135-1145 | DOI | MR

[28] Elliott H. Lieb; Michael Loss Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001, xxii+346 pages | DOI | MR

[29] Pierre-Louis Lions The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | MR | Zbl

[30] Pierre-Louis Lions The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR

[31] Tohru Ozawa Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 3, pp. 403-408 | DOI | MR | Zbl

[32] Jeffrey Rauch Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer, 1991 | DOI

[33] Michael Reed; Barry Simon Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978, xv+396 pages | MR

[34] Harvey A. Rose; Michael I. Weinstein On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, Volume 30 (1988) no. 1-2, pp. 207-218 | DOI | MR | Zbl

[35] Matthias Schmitt; Matthias Wenzel; Fabian Böttcher; Igor Ferrier-Barbut; Tilman Pfau Self-bound droplets of a dilute magnetic quantum liquid, Nature, Volume 539 (2016) no. 7628, pp. 259-262 | DOI

[36] G. Semeghini; G. Ferioli; L. Masi; C. Mazzinghi; L. Wolswijk; F. Minardi; M. Modugno; G. Modugno; M. Inguscio; M. Fattori Self-Bound Quantum Droplets of Atomic Mixtures in Free Space, Phys. Rev. Lett., Volume 120 (2018), 235301 | DOI

[37] M. Nilsson Tengstrand; P. Stürmer; E. Ö. Karabulut; S. M. Reimann Rotating Binary Bose–Einstein Condensates and Vortex Clusters in Quantum Droplets, Phys. Rev. Lett., Volume 123 (2019), p. 160405 | DOI

[38] Michael I. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1983) no. 4, pp. 567-576 | DOI | MR | Zbl

Cited by Sources: