In this note we present a new proof of Sobolev’s inequality under a uniform lower bound of the Ricci curvature. This result was initially obtained in 1983 by Ilias. Our goal is to present a very short proof, to give a review of the famous inequality and to explain how our method, relying on a gradient-flow interpretation, is simple and robust. In particular, we elucidate computations used in numerous previous works, starting with Bidaut–Véron and Véron’s 1991 classical work.
Dans cette note, nous proposons une nouvelle preuve de l’inégalité de Sobolev sur les variétés à courbure de Ricci minorée par une constante positive. Le résultat avait été obtenu en 1983 par Ilias. Nous présentons une preuve très courte de ce théorème, dressons l’état de l’art pour cette fameuse inégalité et expliquons en quoi notre méthode, qui repose sur un flot de gradient, est simple et robuste. En particulier, nous élucidons les calculs utilisés dans des travaux précédents, à commencer par un célèbre article de Bidaut–Véron et Véron publié en 1991.
Accepted:
Published online:
Louis Dupaigne 1; Ivan Gentil 1; Simon Zugmeyer 2
@article{AFST_2023_6_32_1_125_0, author = {Louis Dupaigne and Ivan Gentil and Simon Zugmeyer}, title = {Sobolev{\textquoteright}s inequality under a curvature-dimension condition}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {125--144}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1731}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1731/} }
TY - JOUR AU - Louis Dupaigne AU - Ivan Gentil AU - Simon Zugmeyer TI - Sobolev’s inequality under a curvature-dimension condition JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 125 EP - 144 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1731/ DO - 10.5802/afst.1731 LA - en ID - AFST_2023_6_32_1_125_0 ER -
%0 Journal Article %A Louis Dupaigne %A Ivan Gentil %A Simon Zugmeyer %T Sobolev’s inequality under a curvature-dimension condition %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 125-144 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1731/ %R 10.5802/afst.1731 %G en %F AFST_2023_6_32_1_125_0
Louis Dupaigne; Ivan Gentil; Simon Zugmeyer. Sobolev’s inequality under a curvature-dimension condition. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 125-144. doi : 10.5802/afst.1731. https://afst.centre-mersenne.org/articles/10.5802/afst.1731/
[1] Gradient flows in metric spaces and in the space of probability measures., Birkhäuser, 2008, vii+334 pages | Zbl
[2] Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296 | Zbl
[3] Problèmes isoperimetriques et espaces de Sobolev, J. Differ. Geom., Volume 11 (1976), pp. 573-598 | Zbl
[4] L’hypercontractivité et son utilisation en théorie des semigroupes., Lectures on probability theory. Saint-Flour 1992, Springer, 1994, pp. 1-114 | Zbl
[5] Analysis and geometry of Markov diffusion operators., Springer, 2014, xx+552 pages | DOI
[6] Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator, Duke Math. J., Volume 85 (1996) no. 1, pp. 253-270 | MR | Zbl
[7] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 1, pp. 213-242 | DOI | MR | Zbl
[8] Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, 194, Springer, 1971 | DOI | Zbl
[9] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991) no. 3, pp. 489-539 | DOI | MR | Zbl
[10] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiii+599 pages | DOI | Zbl
[11] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297 | DOI | MR | Zbl
[12] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001) no. 1, pp. 1-82 | DOI | MR | Zbl
[13] Asymptotic -decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., Volume 49 (2000) no. 1, pp. 113-142 | MR | Zbl
[14] Fine asymptotics for fast diffusion equations, Commun. Partial Differ. Equations, Volume 28 (2003) no. 5-6, pp. 1023-1056 | DOI | MR | Zbl
[15] Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol., Volume 21 (2017) no. 1, pp. 603-645 | DOI | MR | Zbl
[16] A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities, Adv. Math., Volume 182 (2004) no. 2, pp. 307-332 | DOI | MR | Zbl
[17] Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., Volume 81 (2002) no. 9, pp. 847-875 | DOI | MR | Zbl
[18] Des équations à diffusion rapide aux inégalités de Sobolev sur les modèles de la géométrie, Ph. D. Thesis, Université Paul Sabatier Toulouse 3 (France) (2005)
[19] Improved Gagliardo–Nirenberg–Sobolev inequalities on manifolds with positive curvature., J. Funct. Anal., Volume 254 (2008) no. 3, pp. 593-611 | DOI | MR | Zbl
[20] Sharp interpolation inequalities on the sphere: new methods and consequences, Partial differential equations. Theory, control and approximation, Springer, 2014, pp. 225-242 | DOI | Zbl
[21] Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal., Volume 267 (2014) no. 5, pp. 1338-1363 | DOI | MR | Zbl
[22] Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, Invent. Math., Volume 206 (2016) no. 2, pp. 397-440 | DOI | MR | Zbl
[23] Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères, Bull. Sci. Math., Volume 121 (1997) no. 2, pp. 71-96 | MR | Zbl
[24] Proprietà di alcune classi di funzioni in più variabili, Ric. Mat., Volume 7 (1958), pp. 102-137 | Zbl
[25] L’entropie, de Clausius aux inégalités fonctionnelles (2020) (https://hal.archives-ouvertes.fr/hal-02464182)
[26] Dynamical aspects of the generalized Schrödinger problem via Otto calculus – A heuristic point of view, Rev. Mat. Iberoam., Volume 36 (2020) no. 4, pp. 1071-1112 | DOI | MR | Zbl
[27] Symmetry of positive solutions of nonlinear elliptic equations in , Volume 7A, 1981, pp. 369-402 | Zbl
[28] Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 34 (1981), pp. 525-598 | DOI | MR | Zbl
[29] Second order analysis on ., Mem. Am. Math. Soc., Volume 1018 (2012), p. 154 | DOI | Zbl
[30] Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser, 2007, xx+585 pages (transl. from the French by Sean Michael Bates.) | Zbl
[31] Introduction à l’analyse non linéaire sur les variétés, Diderot Editeur, 1997, viii+406 pages | Zbl
[32] Nonlinear analysis on manifolds: Sobolev spaces and inequalities, 5, American Mathematical Society, 2000, xii+290 pages | Zbl
[33] Constantes explicites pour les inégalités de Sobolev sur les variétés Riemanniennes compactes, Ann. Inst. Fourier, Volume 33 (1983) no. 2, pp. 151-165 | DOI | Numdam | MR | Zbl
[34] Sobolev inequalities on a weighted Riemannian manifold of positive Bakry-Émery curvature and convex boundary, Pac. J. Math., Volume 294 (2018) no. 2, pp. 423-451 | DOI | Zbl
[35] The variational formulation of the Fokker-Planck equation., SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17 | DOI | MR | Zbl
[36] Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968, xi+648 pages (Translated from the Russian by S. Smith) | DOI | MR
[37] The Yamabe problem, Bull. Am. Math. Soc., Volume 17 (1987), pp. 37-91 | MR | Zbl
[38] Un théorème d’annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Math. Acad. Sci. Paris, Volume 320 (1995) no. 11, pp. 1337-1342 | Zbl
[39] A class of nonlinear conservative elliptic equations in cylinders, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 26 (1998) no. 2, pp. 249-283 | Numdam | MR | Zbl
[40] Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983), pp. 349-374 | DOI | MR | Zbl
[41] On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., Volume 13 (1959), pp. 115-162 | Numdam | MR | Zbl
[42] Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds, Calc. Var. Partial Differ. Equ., Volume 61 (2022), 180 | DOI | MR | Zbl
[43] Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, Volume 14 (1962), pp. 333-340 | MR | Zbl
[44] The geometry of dissipative evolution equations: The porous medium equation., Commun. Partial Differ. Equations, Volume 26 (2001) no. 1-2, pp. 101-174 | DOI | MR | Zbl
[45] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality., J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400 | DOI | MR | Zbl
[46] The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds, Potential Anal., Volume 43 (2015) no. 3, pp. 513-529 | DOI | MR | Zbl
[47] The Sobolev inequalities with best possible constants (1966) (Analysis seminar at California Institute of Technology)
[48] Hypercontractivity and the Bakry-Emery criterion for compact Lie groups, J. Funct. Anal., Volume 65 (1986), pp. 358-367 | DOI | MR | Zbl
[49] Sur un théorème d’analyse fonctionnelle, Rec. Math. Moscou, n. Ser., Volume 4 (1938), pp. 471-497 | Zbl
[50] Equations elliptiques du second ordre à coefficients discontinus, Séminaire de mathématiques supérieures (été 1965), 16, Les Presses de l’Université de Montréal, 1966 | Zbl
[51] Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372 | DOI | MR | Zbl
[52] The porous medium equation. Mathematical theory, Oxford Mathematical Monographs, Clarendon Press, 2007, xxii+624 pages | MR
[53] Optimal transport. Old and new., Springer, 2009, xxii+973 pages | DOI | Zbl
[54] Inégalités isopérimétriques dans les espaces métriques mesurés [d’après F. Cavalletti & A. Mondino], Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135 (Astérisque), Volume 407, Société Mathématique de France, 2019, pp. 213-265 | DOI | MR | Zbl
[55] Dynamical approaches to Sharp Sobolev inequalities, Ph. D. Thesis, Université de Lyon (France) (2019) (https://tel.archives-ouvertes.fr/tel-02611806)
[56] Entropy flows and functional inequalities in convex sets (2020) | arXiv
Cited by Sources: