Let denote the hyperbolic four-space. Given a bordered Riemann surface, , we prove that every smooth conformal superminimal immersion can be approximated uniformly on compacts in by proper conformal superminimal immersions . In particular, contains properly immersed conformal superminimal surfaces normalised by any given open Riemann surface of finite topological type without punctures. The proof uses the analysis of holomorphic Legendrian curves in the twistor space of .
Accepted:
Published online:
Keywords: superminimal surface, hyperbolic space, twistor space, complex contact manifold, holomorphic Legendrian curve
Franc Forstnerič 1
@article{AFST_2023_6_32_1_145_0, author = {Franc Forstneri\v{c}}, title = {Proper superminimal surfaces of given conformal types in the hyperbolic four-space}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {145--172}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1732}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1732/} }
TY - JOUR AU - Franc Forstnerič TI - Proper superminimal surfaces of given conformal types in the hyperbolic four-space JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 145 EP - 172 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1732/ DO - 10.5802/afst.1732 LA - en ID - AFST_2023_6_32_1_145_0 ER -
%0 Journal Article %A Franc Forstnerič %T Proper superminimal surfaces of given conformal types in the hyperbolic four-space %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 145-172 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1732/ %R 10.5802/afst.1732 %G en %F AFST_2023_6_32_1_145_0
Franc Forstnerič. Proper superminimal surfaces of given conformal types in the hyperbolic four-space. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 145-172. doi : 10.5802/afst.1732. https://afst.centre-mersenne.org/articles/10.5802/afst.1732/
[1] Minimal surfaces in minimally convex domains, Trans. Am. Math. Soc., Volume 371 (2019) no. 3, pp. 1735-1770 | DOI | MR | Zbl
[2] Every bordered Riemann surface is a complete proper curve in a ball, Math. Ann., Volume 357 (2013) no. 3, pp. 1049-1070 | DOI | MR | Zbl
[3] Null curves and directed immersions of open Riemann surfaces, Invent. Math., Volume 196 (2014) no. 3, pp. 733-771 | DOI | MR | Zbl
[4] Darboux charts around holomorphic Legendrian curves and applications, Int. Math. Res. Not., Volume 2019 (2019) no. 3, pp. 893-922 | DOI | MR | Zbl
[5] New complex analytic methods in the theory of minimal surfaces: a survey, J. Aust. Math. Soc., Volume 106 (2019) no. 3, pp. 287-341 | DOI | MR | Zbl
[6] The Calabi–Yau problem for Riemann surfaces with finite genus and countably many ends, Rev. Mat. Iberoam., Volume 37 (2021) no. 4, pp. 1399-1412 | DOI | MR | Zbl
[7] Holomorphic Legendrian curves in and superminimal surfaces in , Geom. Topol., Volume 25 (2021) no. 7, pp. 3507-3553 | DOI | MR | Zbl
[8] Holomorphic Legendrian curves, Compos. Math., Volume 153 (2017) no. 9, pp. 1945-1986 | DOI | MR | Zbl
[9] Complete minimal varieties in hyperbolic space, Invent. Math., Volume 69 (1982) no. 3, pp. 477-494 | DOI | MR | Zbl
[10] Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond., Ser. A, Volume 362 (1978) no. 1711, pp. 425-461 | MR | Zbl
[11] Métriques autoduales sur la boule, Invent. Math., Volume 148 (2002) no. 3, pp. 545-607 | DOI | Zbl
[12] Conformal and minimal immersions of compact surfaces into the -sphere, J. Differ. Geom., Volume 17 (1982) no. 3, pp. 455-473 | MR | Zbl
[13] Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser, 1992 (translated from the second Portuguese edition by Francis Flaherty) | MR
[14] Generalized Ahlfors functions, Trans. Am. Math. Soc., Volume 359 (2007) no. 2, pp. 671-686 | DOI | MR | Zbl
[15] Holomorphic curves in complex spaces, Duke Math. J., Volume 139 (2007) no. 2, pp. 203-253 | MR | Zbl
[16] The Poletsky–Rosay theorem on singular complex spaces, Indiana Univ. Math. J., Volume 61 (2012) no. 4, pp. 1407-1423 | DOI | MR | Zbl
[17] Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 12 (1985) no. 4, pp. 589-640 | Numdam | MR | Zbl
[18] Stein manifolds and holomorphic mappings (The homotopy principle in complex analysis), Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 56, Springer, 2017 | DOI
[19] The Calabi–Yau property of superminimal surfaces in self-dual Einstein four-manifolds, J. Geom. Anal., Volume 31 (2021) no. 5, pp. 4754-4780 | DOI | MR | Zbl
[20] Mergelyan approximation theorem for holomorphic Legendrian curves, Anal. PDE, Volume 15 (2022) no. 4, pp. 983-1010 | DOI | MR | Zbl
[21] Discs in pseudoconvex domains, Comment. Math. Helv., Volume 67 (1992) no. 1, pp. 129-145 | DOI | MR | Zbl
[22] On surfaces in four-spaces, Ann. Global Anal. Geom., Volume 2 (1984) no. 3, pp. 257-287 | DOI | MR | Zbl
[23] On superminimal surfaces, Arch. Math., Brno, Volume 33 (1997) no. 1-2, pp. 41-56 | MR | Zbl
[24] La correspondance de Bryant, Theory of minimal submanifolds and applications (Astérisque), Volume 154-155, Société Mathématique de France, 1987, pp. 181-208 | Numdam
[25] Les immersions super-minimales d’une surface compacte dans une variété riemannienne orientée de dimension 4, Theory of minimal submanifolds and applications (Astérisque), Volume 154-155, Société Mathématique de France, 1987, pp. 151-180 | Numdam
[26] Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 14, Springer, 1988 | DOI
[27] Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., Volume 87 (1991) no. 2, pp. 186-225 | DOI | MR | Zbl
[28] Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differ. Geom., Volume 42 (1995) no. 1, pp. 30-112 | MR | Zbl
[29] The transversality of a general translate, Compos. Math., Volume 28 (1974), pp. 287-297 | Numdam | MR | Zbl
[30] Die Krümmung der zweidimensionalen Gebilde im ebenen Raum von vier Dimensionen, Tübingen, Volume 53 (1897), 8 | Zbl
[31] Surfaces minimales et la construction de Calabi–Penrose, Séminaire Bourbaki 1983/84 (Astérisque), Volume 1983, Société Mathématique de France, 1985, pp. 197-211 | Numdam | MR | Zbl
[32] La classification des -sphères minimales dans l’espace projectif complexe, Theory of minimal submanifolds and applications (Astérisque), Volume 154-155, Société Mathématique de France, 1987, pp. 131-149 | Numdam
[33] Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math., Volume 118 (1994) no. 1, pp. 109-132 | DOI | Zbl
[34] Twistor algebra, J. Math. Phys., Volume 8 (1967), pp. 345-366 | DOI | MR | Zbl
[35] Sur la dynamique de l’électron, Rend. Circ. Mat. Palermo, Volume 21 (1906), pp. 129-175 | DOI | Zbl
[36] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer, 1994
[37] Topics in four-dimensional Riemannian geometry, Geometry seminar “Luigi Bianchi” (Pisa, 1982) (Lecture Notes in Mathematics), Volume 1022, Springer, 1982, pp. 33-124 | DOI | MR | Zbl
[38] Bounded holomorphic functions on finite Riemann surfaces, Trans. Am. Math. Soc., Volume 120 (1965), pp. 255-285 | Zbl
[39] Review of geometry and analysis, Mathematics: Frontiers and perspectives, American Mathematical Society, 2000, pp. 353-401
[40] Review of geometry and analysis, Asian J. Math., Volume 4 (2000) no. 1, pp. 235-278 | MR
Cited by Sources: