Minimal hypersurfaces and geometric inequalities
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 179-201.

In this expository paper, we discuss some of the main geometric inequalities for minimal hypersurfaces. These include the classical monotonicity formula, the Alexander–Osserman conjecture, the isoperimetric inequality for minimal surfaces, and the Michael–Simon Sobolev inequality.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1734

Simon Brendle 1

1 Department of Mathematics, Columbia University, New York NY 10027, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_1_179_0,
     author = {Simon Brendle},
     title = {Minimal hypersurfaces and geometric inequalities},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {179--201},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1734},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1734/}
}
TY  - JOUR
AU  - Simon Brendle
TI  - Minimal hypersurfaces and geometric inequalities
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 179
EP  - 201
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1734/
DO  - 10.5802/afst.1734
LA  - en
ID  - AFST_2023_6_32_1_179_0
ER  - 
%0 Journal Article
%A Simon Brendle
%T Minimal hypersurfaces and geometric inequalities
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 179-201
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1734/
%R 10.5802/afst.1734
%G en
%F AFST_2023_6_32_1_179_0
Simon Brendle. Minimal hypersurfaces and geometric inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 179-201. doi : 10.5802/afst.1734. https://afst.centre-mersenne.org/articles/10.5802/afst.1734/

[1] Herbert Alexander; Robert Osserman Area bounds for various classes of surfaces, Am. J. Math., Volume 97 (1975), pp. 753-769 | DOI | MR | Zbl

[2] William K. Allard On the first variation of a varifold, Ann. Math., Volume 95 (1972), pp. 417-491 | DOI | MR | Zbl

[3] Frederick J. Almgren Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. Math., Volume 84 (1966), pp. 277-292 | DOI | MR | Zbl

[4] Frederick J. Almgren Optimal isoperimetric inequalities, Indiana Univ. Math. J., Volume 35 (1986), pp. 451-547 | DOI | MR

[5] Thierry Aubin Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., Volume 11 (1976), pp. 573-598 | Zbl

[6] Dominique Bakry L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory, École d’été de probabilités de St.-Flour (Lecture Notes in Mathematics), Volume 1581, Springer, 1994, pp. 1-114 | Zbl

[7] Dominique Bakry; Michel Émery Diffusions hypercontractives, Séminaire de probabilités XIX (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | Numdam | MR | Zbl

[8] Dominique Bakry; Michel Ledoux Lévy-Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math., Volume 123 (1996) no. 2, pp. 259-281 | DOI | Zbl

[9] Franck Barthe; Dario Cordero-Erausquin Inverse Brascamp–Lieb inequalities along the heat equation, Geometric aspects of functional analysis (Lecture Notes in Mathematics), Volume 1850, Springer, 2004, pp. 65-71 | DOI | MR | Zbl

[10] Bo Berndtsson Superforms, supercurrents, minimal manifolds and Riemannian geometry, Arnold Math. J., Volume 5 (2019) no. 4, pp. 501-532 | DOI | MR | Zbl

[11] Sergey G. Bobkov; Michel Ledoux From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., Volume 10 (2000) no. 5, p. 1082-1052 | MR | Zbl

[12] Christer Borell The Brunn–Minkowski inequality in Gauss space, Invent. Math., Volume 30 (1975), pp. 207-216 | DOI | MR | Zbl

[13] Christer Borell Inequalities of the Brunn–Minkowski type for Gaussian measures, Probab. Theory Relat. Fields, Volume 140 (2008) no. 1-2, pp. 195-205 | DOI | MR | Zbl

[14] Simon Brendle A sharp bound for the area of minimal surfaces in the unit ball, Geom. Funct. Anal., Volume 22 (2012) no. 3, pp. 621-626 | DOI | MR | Zbl

[15] Simon Brendle Embedded minimal tori in S 3 and the Lawson conjecture, Acta Math., Volume 211 (2013) no. 2, pp. 177-190 | DOI | MR | Zbl

[16] Simon Brendle Minimal surfaces in S 3 : a survey of recent results, Bull. Math. Sci., Volume 3 (2013) no. 1, pp. 133-171 | DOI | MR | Zbl

[17] Simon Brendle The isoperimetric inequality for a minimal submanifold in Euclidean space, J. Am. Math. Soc., Volume 34 (2021) no. 2, pp. 595-603 | DOI | MR | Zbl

[18] Simon Brendle The logarithmic Sobolev inequality for a submanifold in Euclidean space, Commun. Pure Appl. Math., Volume 75 (2022) no. 3, pp. 449-454 | DOI | MR | Zbl

[19] Simon Brendle Sobolev inequalities in manifolds with nonnegative curvature, Commun. Pure Appl. Math. (2022) (https://doi.org/10.1002/cpa.22070) | DOI

[20] Simon Brendle; Pei-Ken Hung Area bounds for minimal surfaces that pass through a prescribed point in a ball, Geom. Funct. Anal., Volume 27 (2017) no. 2, pp. 235-239 | DOI | MR | Zbl

[21] Xavier Cabré Equacions en derivades parcials, geometria i control estocàstic, Butll. Soc. Catalana Mat., Volume 15 (2000) no. 1, pp. 7-27

[22] Xavier Cabré Elliptic PDE’s in probability and geometry. Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., Volume 20 (2008) no. 3, pp. 425-457 | DOI | MR | Zbl

[23] Torsten Carleman Zur Theorie der Minimalflächen, Math. Z., Volume 9 (1921), pp. 154-160 | DOI | Zbl

[24] Philippe Castillon Submanifolds, isoperimetric inequalities and optimal transportation, J. Funct. Anal., Volume 259 (2010) no. 1, pp. 79-103 | DOI | MR | Zbl

[25] Fabio Cavalletti; Andrea Mondino Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., Volume 208 (2017) no. 3, pp. 803-849 | DOI | MR | Zbl

[26] Jaigyoung Choe The isoperimetric inequality for a minimal surface with radially connected boundary, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (1990) no. 4, pp. 583-593 | Numdam | MR | Zbl

[27] Tobias H. Colding; William P. II Minicozzi Generic mean curvature flow I: generic singularities, Ann. Math., Volume 175 (2012) no. 2, pp. 755-833 | DOI | MR | Zbl

[28] Tobias Holck Colding; William P. II Minicozzi A course in minimal surfaces, Graduate Studies in Mathematics, 121, American Mathematical Society, 2011

[29] Dario Cordero-Erausquin Some applications of mass transport to Gaussian-type inequalities, Arch. Ration. Mech. Anal., Volume 161 (2002) no. 3, pp. 257-269 | DOI | MR | Zbl

[30] Dario Cordero-Erausquin; Robert J. McCann; Michael Schmuckenschläger A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., Volume 146 (2001) no. 2, pp. 219-257 | DOI | MR | Zbl

[31] Ulrich Dierkes; Stefan Hildebrandt; Anthony J. Tromba Minimal surfaces, Grundlehren der Mathematischen Wissenschaften, 339, Springer, 2010

[32] Klaus Ecker Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., Volume 522 (2000), pp. 105-118 | MR | Zbl

[33] Klaus Ecker Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser, 2004 | DOI

[34] Tobias Ekholm; Brian White; Daniel Wienholtz Embeddedness of minimal surfaces with total boundary curvature at most 4π, Ann. Math., Volume 155 (2002), pp. 209-234 | DOI | MR | Zbl

[35] Herbert Federer; Wendell H. Fleming Normal and integral currents, Ann. Math., Volume 72 (1960), pp. 458-520 | DOI | MR

[36] Jerry M. Feinberg The isoperimetric inequality for doubly-connected minimal surfaces in n , J. Anal. Math., Volume 32 (1977), pp. 249-278 | DOI | MR | Zbl

[37] Robert Greene; Hung-Hsi Wu C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 47-84 | DOI | Numdam | MR

[38] Mikhael Gromov Filling Riemannian manifolds, J. Differ. Geom., Volume 18 (1983), pp. 1-147 | MR | Zbl

[39] Mikhael Gromov Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999

[40] Leonard Gross Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975), pp. 1061-1083 | DOI | MR

[41] Leonard Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms (Varenna, 1992) (Lecture Notes in Mathematics), Volume 1563, Springer, 1992, pp. 54-88 | DOI | Zbl

[42] Chuan-Chih Hsiung Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. Math., Volume 73 (1961), pp. 213-220 | DOI | MR | Zbl

[43] Gerhard Huisken Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990) no. 1, p. 285--299 | MR | Zbl

[44] Adolf Hurwitz Sur quelques applications géométriques des séries de Fourier, Ann. Sci. Éc. Norm. Supér., Volume 19 (1902), pp. 357-408 | DOI | Numdam

[45] Bo’az Klartag Needle decompositions in Riemannian geometry, Memoirs of the American Mathematical Society, 1180, American Mathematical Society, 2017

[46] Herbert Blaine Lawson Complete minimal surfaces in S 3 , Ann. Math., Volume 92 (1970), pp. 335-374 | DOI | MR

[47] Michel Ledoux Isoperimetry and Gaussian analysis, Lectures on probability theory and statistics. École d’été de probabilités de St.-Flour (Lecture Notes in Mathematics), Volume 1648, Springer, 1996, pp. 165-294 | DOI | MR | Zbl

[48] Michel Ledoux Concentration of measure and logarithmic Sobolev inequalities, Séminaire de probabilités XXXIII (Lecture Notes in Mathematics), Volume 1709, Springer, 1999, pp. 120-216 | DOI | Numdam | MR | Zbl

[49] Peter Li; Richard Schoen; Shing-Tung Yau On the isoperimetric inequality for minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (1984), pp. 237-244 | Numdam | MR | Zbl

[50] Lazarʼ A. Lyusternik Die Brunn–Minkowskische Ungleichung für beliebige meßbare Mengen, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 1935 (1935) no. 3, pp. 55-58

[51] James H. Michael; Leon Simon Sobolev and mean-value inequalities on generalized submanifolds of n , Commun. Pure Appl. Math., Volume 26 (1973), pp. 361-379 | DOI | MR

[52] Robert Osserman; Menahem Schiffer Doubly-connected minimal surfaces, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 285-307 | DOI | MR | Zbl

[53] William T. Reid The isoperimetric inequality and associated boundary problems, J. Math. Mech., Volume 8 (1959), pp. 897-906 | MR | Zbl

[54] Leon Simon Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Centre for Mathematical Analysis, 1983

[55] Elias M. Stein; Rami Shakarchi Real analysis: measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, 3, Princeton University Press, 2009 | DOI

[56] Andrew Stone On the isoperimetric inequality on a minimal surface, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 4, pp. 369-391 | DOI | MR | Zbl

[57] Vladimir N. Sudakov; Boris S. Tsirelson Extremal properties of half-spaces for spherically invariant measures, J. Sov. Math., Volume 9 (1978), pp. 9-18 | DOI

[58] Giorgio Talenti Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372 | DOI | MR | Zbl

[59] Peter Topping Relating diameter and mean curvature for submanifolds in Euclidean space, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 539-546 | DOI | MR | Zbl

[60] Neil S. Trudinger Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 11 (1994) no. 4, pp. 411-425 | DOI | Numdam | MR | Zbl

Cited by Sources: