Yet another heat semigroup characterization of BV functions on Riemannian manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 577-606.

This paper provides a characterization of functions of bounded variation (BV) in a compact Riemannian manifold in terms of the short time behavior of the heat semigroup. In particular, the main result proves that the total variation of a function equals the limit characterizing the space BV. The proof is carried out following two fully independent approaches, a probabilistic and an analytic one; each method presents different advantages.

Ce papier caractérise sur les variétés riemanniennes compactes les fonctions a variation bornée á l’aide d’asymptotiques en temps petit du semigroupe de la chaleur. En particulier, on montre comment la variation totale d’une fonction peut être calculée à partir du noyau de la chaleur. Nous utilisons deux approches disjointes, une approche probabiliste et une approche analytique ; ces deux approches ont des avantages différents et potentiellement peuvent être généralisées dans des contextes distincts.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1745
Classification: 58J35, 26A45
Keywords: BV functions, heat semigroup, short-time heat flow, Riemannian manifolds, Stochastic analysis on manifolds.

Patricia Alonso Ruiz 1; Fabrice Baudoin 2

1 Texas A&M University, College Station, TX 7843-3368, USA
2 University of Connecticut, Storrs, CT 06269-1009, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_3_577_0,
     author = {Patricia Alonso Ruiz and Fabrice Baudoin},
     title = {Yet another heat semigroup characterization of {BV} functions on {Riemannian} manifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {577--606},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {3},
     year = {2023},
     doi = {10.5802/afst.1745},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1745/}
}
TY  - JOUR
AU  - Patricia Alonso Ruiz
AU  - Fabrice Baudoin
TI  - Yet another heat semigroup characterization of BV functions on Riemannian manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 577
EP  - 606
VL  - 32
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1745/
DO  - 10.5802/afst.1745
LA  - en
ID  - AFST_2023_6_32_3_577_0
ER  - 
%0 Journal Article
%A Patricia Alonso Ruiz
%A Fabrice Baudoin
%T Yet another heat semigroup characterization of BV functions on Riemannian manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 577-606
%V 32
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1745/
%R 10.5802/afst.1745
%G en
%F AFST_2023_6_32_3_577_0
Patricia Alonso Ruiz; Fabrice Baudoin. Yet another heat semigroup characterization of BV functions on Riemannian manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 3, pp. 577-606. doi : 10.5802/afst.1745. https://afst.centre-mersenne.org/articles/10.5802/afst.1745/

[1] Patricia Alonso Ruiz; Fabrice Baudoin Gagliardo–Nirenberg, Trudinger–Moser and Morrey inequalities on Dirichlet spaces, J. Math. Anal. Appl., Volume 497 (2021) no. 2, 124899, 27 pages | Zbl

[2] Patricia Alonso-Ruiz; Fabrice Baudoin; Li Chen; Luke Rogers; Nageswari Shanmugalingam; Alexander Teplyaev Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities, J. Funct. Anal., Volume 278 (2020) no. 11, 108459, 48 pages

[3] Patricia Alonso-Ruiz; Fabrice Baudoin; Li Chen; Luke Rogers; Nageswari Shanmugalingam; Alexander Teplyaev Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 3, 103, 32 pages

[4] Patricia Alonso-Ruiz; Fabrice Baudoin; Li Chen; Luke Rogers; Nageswari Shanmugalingam; Alexander Teplyaev Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 5, 170, 38 pages

[5] Luigi Ambrosio; Simone Di Marino Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., Volume 266 (2014) no. 7, pp. 4150-4188

[6] Fabrice Baudoin Geometric inequalities on Riemannian and sub-Riemannian manifolds by heat semigroups techniques (2018) (https://arxiv.org/abs/1801.05702, to appear in Levico Summer School Lecture notes)

[7] Jean Bourgain; Haim Brezis; Petru Mironescu Another look at Sobolev spaces, Optimal control and partial differential equations (IOS Press), Ohmsha, 2001, pp. 439-455

[8] Almut Burchard; Michael Schmuckenschläger Comparison theorems for exit times, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 651-692

[9] Andrea Carbonaro; Giancarlo Mauceri A note on bounded variation and heat semigroup on Riemannian manifolds, Bull. Aust. Math. Soc., Volume 76 (2007) no. 1, pp. 155-160

[10] Isaac Chavel Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., 1984 (including a chapter by Burton Randol, with an appendix by Jozef Dodziuk)

[11] Juan Dávila On an open question about functions of bounded variation, Calc. Var. Partial Differ. Equ., Volume 15 (2002) no. 4, pp. 519-527

[12] Masatoshi Fukushima; Masanori Hino On the space of BV functions and a related stochastic calculus in infinite dimensions, J. Funct. Anal., Volume 183 (2001) no. 1, pp. 245-268

[13] Sylvestre Gallot; Dominique Hulin; Jacques Lafontaine Riemannian geometry, Universitext, Springer, 1990

[14] Alexander Grigorʼyan Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, 2009

[15] Batu Güneysu; Diego Pallara Functions with bounded variation on a class of Riemannian manifolds with Ricci curvature unbounded from below, Math. Ann., Volume 363 (2015) no. 3, pp. 1307-1331

[16] Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, 5, American Mathematical Society, 1999

[17] Elton P. Hsu Stochastic analysis on manifolds, Graduate Studies in Mathematics, 38, American Mathematical Society, 2002

[18] Nicholas J. Korevaar; Richard M. Schoen Sobolev spaces and harmonic maps for metric space targets, Commun. Anal. Geom., Volume 1 (1993) no. 4, pp. 561-659

[19] Andreas Kreuml; Olaf Mordhorst Fractional Sobolev norms and BV functions on manifolds, Nonlinear Anal., Theory Methods Appl., Volume 187 (2019), pp. 450-466

[20] Michel Ledoux Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space, Bull. Sci. Math., Volume 118 (1994) no. 6, pp. 485-510

[21] Giovanni Leoni; Daniel Spector Characterization of Sobolev and BV spaces, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 2926-2958

[22] Matthias Ludewig Strong short-time asymptotics and convolution approximation of the heat kernel, Ann. Global Anal. Geom., Volume 55 (2019) no. 2, pp. 371-394

[23] Niko Marola; Michele Miranda; Nageswari Shanmugalingam Characterizations of sets of finite perimeter using heat kernels in metric spaces, Potential Anal., Volume 45 (2016) no. 4, pp. 609-633

[24] Michele Miranda Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl., Volume 82 (2003) no. 8, pp. 975-1004

[25] Michele Miranda; Diego Pallara; Fabio Paronetto; Marc Preunkert Heat semigroup and functions of bounded variation on Riemannian manifolds, J. Reine Angew. Math., Volume 613 (2007), pp. 99-119

[26] Michele Miranda; Diego Pallara; Fabio Paronetto; Marc Preunkert Short-time heat flow and functions of bounded variation in R N , Ann. Fac. Sci. Toulouse, Math., Volume 16 (2007) no. 1, pp. 125-145

[27] Marc Preunkert A semigroup version of the isoperimetric inequality, Semigroup Forum, Volume 68 (2004) no. 2, pp. 233-245

Cited by Sources: