Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 607-622.

Let A be an abelian variety over an algebraically closed field. We show that A is the automorphism group scheme of some smooth projective variety if and only if A has only finitely many automorphisms as an algebraic group. This generalizes a result of Lombardo and Maffei for complex abelian varieties.

Soit A une variété abélienne sur un corps algébriquement clos. Nous montrons que A est le groupe d’automorphismes d’une variété projective lisse si et seulement si A n’a qu’un nombre fini d’automorphismes en tant que groupe algébrique. Ceci généralise un résultat de Lombardo et Maffei pour les variétés abéliennes complexes.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1746
Classification: 14K05, 14J50, 14L30, 14M20
Keywords: Abelian varieties, automorphism group schemes, Albanese morphism

Jérémy Blanc 1; Michel Brion 2

1 Universität Basel, Departement Mathematik und Informatik, Spiegelgasse 1, CH-4051 Basel, Switzerland
2 Université Grenoble Alpes, Institut Fourier, CS 40700, 38058 Grenoble Cedex 9, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_4_607_0,
     author = {J\'er\'emy Blanc and Michel Brion},
     title = {Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {607--622},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {4},
     year = {2023},
     doi = {10.5802/afst.1746},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1746/}
}
TY  - JOUR
AU  - Jérémy Blanc
AU  - Michel Brion
TI  - Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 607
EP  - 622
VL  - 32
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1746/
DO  - 10.5802/afst.1746
LA  - en
ID  - AFST_2023_6_32_4_607_0
ER  - 
%0 Journal Article
%A Jérémy Blanc
%A Michel Brion
%T Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 607-622
%V 32
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1746/
%R 10.5802/afst.1746
%G en
%F AFST_2023_6_32_4_607_0
Jérémy Blanc; Michel Brion. Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 607-622. doi : 10.5802/afst.1746. https://afst.centre-mersenne.org/articles/10.5802/afst.1746/

[1] Michel Brion Some basic results on actions of nonaffine algebraic groups, Symmetry and Spaces (Progress in Mathematics), Volume 278, Birkhäuser, 2010, pp. 1-20 | DOI | MR | Zbl

[2] Mathieu Florence Realisation of Abelian varieties as automorphism groups (2021) | arXiv

[3] Alexander Grothendieck Techniques de construction et théorèmes d’existence en géométrie algébrique IV : les schémas de Hilbert, Séminaire Bourbaki Vol. 13, Secrétariat Mathématique, 1960, pp. 249-276 (Exp. 221)

[4] Davide Lombardo; Andrea Maffei Abelian varieties as automorphism groups of smooth projective varieties, Int. Math. Res. Not., Volume 2020 (2020) no. 7, pp. 1942-1956 | DOI | MR | Zbl

[5] Manohar Madan; Michael Rosen The automorphism group of a function field, Trans. Am. Math. Soc., Volume 115 (1992) no. 4, pp. 923-929 | MR | Zbl

[6] Gebhard Martin Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces, Algebra Number Theory, Volume 16 (2022) no. 7, pp. 1655-1704 | DOI | MR | Zbl

[7] Hideyuki Matsumura; Frans Oort Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | MR | Zbl

[8] David Mumford Abelian varieties, Hindustan Book Agency, 2008 (corrected reprint of the 2nd ed. 1974)

Cited by Sources: