Let be an abelian variety over an algebraically closed field. We show that is the automorphism group scheme of some smooth projective variety if and only if has only finitely many automorphisms as an algebraic group. This generalizes a result of Lombardo and Maffei for complex abelian varieties.
Soit A une variété abélienne sur un corps algébriquement clos. Nous montrons que A est le groupe d’automorphismes d’une variété projective lisse si et seulement si A n’a qu’un nombre fini d’automorphismes en tant que groupe algébrique. Ceci généralise un résultat de Lombardo et Maffei pour les variétés abéliennes complexes.
Accepted:
Published online:
Keywords: Abelian varieties, automorphism group schemes, Albanese morphism
Jérémy Blanc 1; Michel Brion 2
@article{AFST_2023_6_32_4_607_0, author = {J\'er\'emy Blanc and Michel Brion}, title = {Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {607--622}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {4}, year = {2023}, doi = {10.5802/afst.1746}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1746/} }
TY - JOUR AU - Jérémy Blanc AU - Michel Brion TI - Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 607 EP - 622 VL - 32 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1746/ DO - 10.5802/afst.1746 LA - en ID - AFST_2023_6_32_4_607_0 ER -
%0 Journal Article %A Jérémy Blanc %A Michel Brion %T Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 607-622 %V 32 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1746/ %R 10.5802/afst.1746 %G en %F AFST_2023_6_32_4_607_0
Jérémy Blanc; Michel Brion. Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 607-622. doi : 10.5802/afst.1746. https://afst.centre-mersenne.org/articles/10.5802/afst.1746/
[1] Some basic results on actions of nonaffine algebraic groups, Symmetry and Spaces (Progress in Mathematics), Volume 278, Birkhäuser, 2010, pp. 1-20 | DOI | MR | Zbl
[2] Realisation of Abelian varieties as automorphism groups (2021) | arXiv
[3] Techniques de construction et théorèmes d’existence en géométrie algébrique IV : les schémas de Hilbert, Séminaire Bourbaki Vol. 13, Secrétariat Mathématique, 1960, pp. 249-276 (Exp. 221)
[4] Abelian varieties as automorphism groups of smooth projective varieties, Int. Math. Res. Not., Volume 2020 (2020) no. 7, pp. 1942-1956 | DOI | MR | Zbl
[5] The automorphism group of a function field, Trans. Am. Math. Soc., Volume 115 (1992) no. 4, pp. 923-929 | MR | Zbl
[6] Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces, Algebra Number Theory, Volume 16 (2022) no. 7, pp. 1655-1704 | DOI | MR | Zbl
[7] Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | MR | Zbl
[8] Abelian varieties, Hindustan Book Agency, 2008 (corrected reprint of the 2nd ed. 1974)
Cited by Sources: