We introduce the Kashiwara–Vergne bigraded Lie algebra associated with a finite abelian group and give its mould theoretic reformulation. By using the mould theory, we show that it includes Goncharov’s dihedral Lie algebra, which generalizes the result of Raphael and Schneps.
Nous introduisons l’algèbre de Lie bi-graduée de Kashiwara–Vergne associée à un groupe fini abélien, et donnons sa reformulation moule-théorique. En utilisant la théorie des moules, nous démontrons que celle-ci inclut l’algèbre de Lie diédrale de Goncharov, généralisant ainsi un résultat de Raphael et Schneps.
Accepted:
Published online:
Keywords: Kashiwara-Verge Lie algebra, dihedral Lie algebra, mould theory
Hidekazu Furusho 1; Nao Komiyama 2
@article{AFST_2023_6_32_4_655_0, author = {Hidekazu Furusho and Nao Komiyama}, title = {Kashiwara{\textendash}Vergne and dihedral bigraded {Lie} algebras in mould theory}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {655--725}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {4}, year = {2023}, doi = {10.5802/afst.1749}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1749/} }
TY - JOUR AU - Hidekazu Furusho AU - Nao Komiyama TI - Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 655 EP - 725 VL - 32 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1749/ DO - 10.5802/afst.1749 LA - en ID - AFST_2023_6_32_4_655_0 ER -
%0 Journal Article %A Hidekazu Furusho %A Nao Komiyama %T Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 655-725 %V 32 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1749/ %R 10.5802/afst.1749 %G en %F AFST_2023_6_32_4_655_0
Hidekazu Furusho; Nao Komiyama. Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 655-725. doi : 10.5802/afst.1749. https://afst.centre-mersenne.org/articles/10.5802/afst.1749/
[1] Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 112 (2010) no. 112, pp. 143-189 | DOI | Numdam | MR | Zbl
[2] The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem, Adv. Math., Volume 326 (2018), pp. 1-53 | DOI | MR | Zbl
[3] The Kashiwara–Vergne conjecture and Drinfeld’s associators, Ann. Math., Volume 175 (2012) no. 2, pp. 415-463 | DOI | MR | Zbl
[4] On multiple -values, J. Math. Soc. Japan, Volume 56 (2004) no. 4, pp. 967-991 | Zbl
[5] Calcul moulien, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 2, pp. 307-395 | DOI | Numdam | MR | Zbl
[6] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Leningr. Math. J., Volume 2 (1991) no. 4, pp. 829-860
[7] Les fonctions résurgentes. Tome I et II, Publications Mathématiques d’Orsay, 81, Université de Paris-Sud, 1981
[8] ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 2, pp. 411-478 | DOI | Numdam | Zbl
[9] The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles, Asymptotics in dynamics, geometry and PDEs. Generalized Borel summation. Vol. II (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 12, Edizioni della Normale, 2011, pp. 27-211 | MR | Zbl
[10] Quasi-reflection algebras and cyclotomic associators, Sel. Math., New Ser., Volume 13 (2007) no. 3, pp. 391-463 | DOI | MR | Zbl
[11] Around associators, Automorphic forms and Galois representations (London Mathematical Society Lecture Note Series), Volume 415, Cambridge University Press, 2014, pp. 105-117 | DOI | MR | Zbl
[12] The dihedral Lie algebras and Galois symmetries of , Duke Math. J., Volume 110 (2001) no. 3, pp. 397-487 | DOI | MR
[13] Multiple polylogarithms and mixed Tate motives (2001) | arXiv
[14] Bigraded Lie algebras related to multiple zeta values, Publ. Res. Inst. Math. Sci., Volume 58 (2022) no. 4, pp. 757-791 | DOI | MR | Zbl
[15] Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfeld, Ph. D. Thesis, Université de Picardie Jules Verne (2000)
[16] Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math., Inst. Hautes Étud. Sci., Volume 95 (2002), pp. 185-231 | DOI | Numdam | MR | Zbl
[17] On linearised and elliptic versions of the Kashiwara-Vergne Lie algebra (2017) | arXiv
[18] Mould theory and the double shuffle Lie algebra structure, Periods in quantum field theory and arithmetic (Springer Proceedings in Mathematics & Statistics), Volume 314, Springer, 2020, pp. 399-430 | DOI | MR | Zbl
[19] Mould expansions for the saddle-node and resurgence monomials, Renormalization and Galois theories (IRMA Lectures in Mathematics and Theoretical Physics), Volume 15, European Mathematical Society, 2009, pp. 83-163 | DOI | MR | Zbl
[20] Double shuffle and Kashiwara-Vergne Lie algebras, J. Algebra, Volume 367 (2012), pp. 54-74 | DOI | MR | Zbl
[21] ARI, GARI, ZIG and ZAG: An introduction to Ecalle’s theory of multiple zeta values (2015) | arXiv
Cited by Sources: