Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 655-725.

We introduce the Kashiwara–Vergne bigraded Lie algebra associated with a finite abelian group and give its mould theoretic reformulation. By using the mould theory, we show that it includes Goncharov’s dihedral Lie algebra, which generalizes the result of Raphael and Schneps.

Nous introduisons l’algèbre de Lie bi-graduée de Kashiwara–Vergne associée à un groupe fini abélien, et donnons sa reformulation moule-théorique. En utilisant la théorie des moules, nous démontrons que celle-ci inclut l’algèbre de Lie diédrale de Goncharov, généralisant ainsi un résultat de Raphael et Schneps.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1749
Classification: 17B05, 11M32, 16S30, 17B40
Keywords: Kashiwara-Verge Lie algebra, dihedral Lie algebra, mould theory

Hidekazu Furusho 1; Nao Komiyama 2

1 Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
2 Department of Mathematics, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_4_655_0,
     author = {Hidekazu Furusho and Nao Komiyama},
     title = {Kashiwara{\textendash}Vergne and dihedral bigraded {Lie} algebras in mould theory},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {655--725},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {4},
     year = {2023},
     doi = {10.5802/afst.1749},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1749/}
}
TY  - JOUR
AU  - Hidekazu Furusho
AU  - Nao Komiyama
TI  - Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 655
EP  - 725
VL  - 32
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1749/
DO  - 10.5802/afst.1749
LA  - en
ID  - AFST_2023_6_32_4_655_0
ER  - 
%0 Journal Article
%A Hidekazu Furusho
%A Nao Komiyama
%T Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 655-725
%V 32
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1749/
%R 10.5802/afst.1749
%G en
%F AFST_2023_6_32_4_655_0
Hidekazu Furusho; Nao Komiyama. Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 655-725. doi : 10.5802/afst.1749. https://afst.centre-mersenne.org/articles/10.5802/afst.1749/

[1] Anton Alekseev; Benjamin Enriquez; Charles Torossian Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 112 (2010) no. 112, pp. 143-189 | DOI | Numdam | MR | Zbl

[2] Anton Alekseev; Nariya Kawazumi; Yusuke Kuno; Florian Naef The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem, Adv. Math., Volume 326 (2018), pp. 1-53 | DOI | MR | Zbl

[3] Anton Alekseev; Charles Torossian The Kashiwara–Vergne conjecture and Drinfeld’s associators, Ann. Math., Volume 175 (2012) no. 2, pp. 415-463 | DOI | MR | Zbl

[4] Tsuneo Arakawa; Masanobu Kaneko On multiple L-values, J. Math. Soc. Japan, Volume 56 (2004) no. 4, pp. 967-991 | Zbl

[5] Jacky Cresson Calcul moulien, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 2, pp. 307-395 | DOI | Numdam | MR | Zbl

[6] Vladimir G. Drinfelʼd On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( ¯/), Leningr. Math. J., Volume 2 (1991) no. 4, pp. 829-860

[7] Jean Ecalle Les fonctions résurgentes. Tome I et II, Publications Mathématiques d’Orsay, 81, Université de Paris-Sud, 1981

[8] Jean Ecalle ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 2, pp. 411-478 | DOI | Numdam | Zbl

[9] Jean Ecalle The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles, Asymptotics in dynamics, geometry and PDEs. Generalized Borel summation. Vol. II (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 12, Edizioni della Normale, 2011, pp. 27-211 | MR | Zbl

[10] Benjamin Enriquez Quasi-reflection algebras and cyclotomic associators, Sel. Math., New Ser., Volume 13 (2007) no. 3, pp. 391-463 | DOI | MR | Zbl

[11] Hidekazu Furusho Around associators, Automorphic forms and Galois representations (London Mathematical Society Lecture Note Series), Volume 415, Cambridge University Press, 2014, pp. 105-117 | DOI | MR | Zbl

[12] Alexander B. Goncharov The dihedral Lie algebras and Galois symmetries of π 1 (l) ( 1 -({0,}μ N )), Duke Math. J., Volume 110 (2001) no. 3, pp. 397-487 | DOI | MR

[13] Alexander B. Goncharov Multiple polylogarithms and mixed Tate motives (2001) | arXiv

[14] Mohamad Maassarani Bigraded Lie algebras related to multiple zeta values, Publ. Res. Inst. Math. Sci., Volume 58 (2022) no. 4, pp. 757-791 | DOI | MR | Zbl

[15] Georges Racinet Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfeld, Ph. D. Thesis, Université de Picardie Jules Verne (2000)

[16] Georges Racinet Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math., Inst. Hautes Étud. Sci., Volume 95 (2002), pp. 185-231 | DOI | Numdam | MR | Zbl

[17] Elise Raphael; Leila Schneps On linearised and elliptic versions of the Kashiwara-Vergne Lie algebra (2017) | arXiv

[18] Adriana Salerno; Leila Schneps Mould theory and the double shuffle Lie algebra structure, Periods in quantum field theory and arithmetic (Springer Proceedings in Mathematics & Statistics), Volume 314, Springer, 2020, pp. 399-430 | DOI | MR | Zbl

[19] David Sauzin Mould expansions for the saddle-node and resurgence monomials, Renormalization and Galois theories (IRMA Lectures in Mathematics and Theoretical Physics), Volume 15, European Mathematical Society, 2009, pp. 83-163 | DOI | MR | Zbl

[20] Leila Schneps Double shuffle and Kashiwara-Vergne Lie algebras, J. Algebra, Volume 367 (2012), pp. 54-74 | DOI | MR | Zbl

[21] Leila Schneps ARI, GARI, ZIG and ZAG: An introduction to Ecalle’s theory of multiple zeta values (2015) | arXiv

Cited by Sources: