A construction of representations of 3-manifold groups into PU(2,1) through Lefschetz fibrations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 769-803.

We obtain infinitely many (non-conjugate) representations of 3-manifold fundamental groups into a lattice in Isom( 2 ), the holomorphic isometry group of complex hyperbolic space. The lattice is an orbifold fundamental group of a branched covering of the projective plane along an arrangement of hyperplanes constructed by Hirzebruch. The 3-manifolds are related to a Lefschetz fibration of the complex hyperbolic orbifold.

Nous obtenons un nombre infini de représentations non-conjuguées de groupes fondamentaux de 3-variétés dans un réseau du groupe Isom( 2 ) des isométries holomorphes de l’espace hyperbolique complexe. Ce réseau est un groupe fondamental orbifold d’un revêtement du plan projectif ramifié le long d’un arrangement de droites, construit par Hirzebruch. Les 3-variétés sont liées à une fibration de Lefschetz de l’orbifold hyperbolique complexe.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1751

Ruben Dashyan 1

1 Institut de Mathématiques de Jussieu-Paris Rive Gauche, 4 place Jussieu, boîte courrier 247, 75252 Paris Cedex 5, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_4_769_0,
     author = {Ruben Dashyan},
     title = {A construction of representations of $3$-manifold groups into $\mathrm{PU}(2,1)$ through {Lefschetz} fibrations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {769--803},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {4},
     year = {2023},
     doi = {10.5802/afst.1751},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1751/}
}
TY  - JOUR
AU  - Ruben Dashyan
TI  - A construction of representations of $3$-manifold groups into $\mathrm{PU}(2,1)$ through Lefschetz fibrations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 769
EP  - 803
VL  - 32
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1751/
DO  - 10.5802/afst.1751
LA  - en
ID  - AFST_2023_6_32_4_769_0
ER  - 
%0 Journal Article
%A Ruben Dashyan
%T A construction of representations of $3$-manifold groups into $\mathrm{PU}(2,1)$ through Lefschetz fibrations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 769-803
%V 32
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1751/
%R 10.5802/afst.1751
%G en
%F AFST_2023_6_32_4_769_0
Ruben Dashyan. A construction of representations of $3$-manifold groups into $\mathrm{PU}(2,1)$ through Lefschetz fibrations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 769-803. doi : 10.5802/afst.1751. https://afst.centre-mersenne.org/articles/10.5802/afst.1751/

[1] Daniel Burns; Steven Shnider Spherical hypersurfaces in complex manifolds, Invent. Math., Volume 33 (1976), pp. 223-246 | DOI | MR | Zbl

[2] Élie Cartan Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, Ann. Mat. Pura Appl., Volume 11 (1932), pp. 17-90 | DOI

[3] Andrew J. Casson; Steven A. Bleiler Automorphisms of surfaces after Nielsen and Thurston., London Mathematical Society Student Texts, 9, Cambridge University Press, 1988, 105 pages | DOI | Zbl

[4] Ruben Dashyan Representations of fundamental groups in hyperbolic geometry, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2017) (https://theses.hal.science/tel-01684245)

[5] Martin Deraux Forgetful maps between Deligne–Mostow ball quotients, Geom. Dedicata, Volume 150 (2011), pp. 377-389 | DOI | MR | Zbl

[6] Martin Deraux; Elisha Falbel Complex hyperbolic geometry of the figure-eight knot, Geom. Topol., Volume 19 (2015) no. 1, pp. 237-293 | DOI | MR | Zbl

[7] Igor Dolgachev Lectures on invariant theory, Cambridge University Press, 2003, xvi+220 pages | DOI | Zbl

[8] Elisha Falbel A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differ. Geom., Volume 79 (2008) no. 1, pp. 69-110 | DOI | MR | Zbl

[9] Elisha Falbel; Jieyan Wang Branched spherical CR structures on the complement of the figure-eight knot, Mich. Math. J., Volume 63 (2014) no. 3, pp. 635-667 | DOI | MR | Zbl

[10] Benson Farb; Dan Margalit A primer on mapping class groups, Princeton University Press, 2011, xiv+492 pages | DOI | Zbl

[11] Travaux de Thurston sur les surfaces. Séminaire Orsay (Albert Fathi; François Laudenbach; Valentin Poénaru, eds.), Astérisque, 66-67, Société Mathématique de France, 1991, 286 pages | Zbl

[12] Friedrich Hirzebruch Arrangements of lines and algebraic surfaces, Arithmetic and geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. II: Geometry (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 113-140 | MR | Zbl

[13] Curtis T. McMullen Braid groups and Hodge theory, Math. Ann., Volume 355 (2013) no. 3, pp. 893-946 | DOI | MR | Zbl

[14] Yoichi Miyaoka Algebraic surfaces with positive indices, Classification of algebraic and analytic manifolds (Proc. Symp. Katata/Jap. 1982) (Progress in Mathematics), Volume 39, Birkhäuser, 1983, pp. 281-301 | MR | Zbl

[15] Makoto Namba Branched coverings and algebraic functions, Pitman Research Notes in Mathematics Series, 161, Longman Scientific & Technical; John Wiley & Sons, 1987, 201 pages | Zbl

[16] Jean-Pierre Otal Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque, 235, Société Mathématique de France, 1996, x+159 pages | Numdam | MR | Zbl

[17] John R. Parker Complex hyperbolic lattices, Discrete groups and geometric structures. Proceedings of the 5th workshop on discrete groups and geometric structures, with applications III, Kortrijk, Belgium, May 26–30, 2008 (Contemporary Mathematics), Volume 501, American Mathematical Society, 2009, pp. 1-42 | MR | Zbl

[18] William P. Thurston On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl

[19] Paula Tretkoff Complex ball quotients and line arrangements in the projective plane, Mathematical Notes (Princeton), 51, Princeton University Press, 2016, ix+215 pages (with an appendix by Hans-Christoph Im Hof) | DOI | MR | Zbl

[20] Tadashi Yamazaki; Masaaki Yoshida On Hirzebruch’s examples of surfaces with c 1 2 =3c 2 , Math. Ann., Volume 266 (1984), pp. 421-431 | DOI | MR | Zbl

Cited by Sources: