In the current paper we study the -analogue introduced by Jimbo and Sakai of the well known Painlevé VI differential equation. We explain how it can be deduced from a -analogue of Schlesinger equations and show that for a convenient change of variables and auxiliary parameters, it admits a -analogue of Hamiltonian formulation. This allows us to show that Sakai’s -analogue of Okamoto space of initial conditions for admits the differential Okamoto space via some natural limit process.
Dans cet article, nous étudions le -analogue de la sixième équation de Painlevé introduit par Jimbo et Sakai. Nous expliquons comment il peut être retrouvé à partir d’un -analogue de l’équation de Schlesinger et nous montrons que, après un changement des paramètre, il admet une formulation en terme de -système Hamiltonien. Cela nous permet nous prouver que le -analogue de l’espace d’Okamoto des conditions initiales introduit par Sakai admet l’espace d’Okamoto différentiel comme limite lorsque tend vers .
Accepted:
Published online:
Thomas Dreyfus 1; Viktoria Heu 2
@article{AFST_2023_6_32_5_969_0, author = {Thomas Dreyfus and Viktoria Heu}, title = {Degeneration from difference to differential {Okamoto} spaces for the sixth {Painlev\'e} equation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {969--1041}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {5}, year = {2023}, doi = {10.5802/afst.1760}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1760/} }
TY - JOUR AU - Thomas Dreyfus AU - Viktoria Heu TI - Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 969 EP - 1041 VL - 32 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1760/ DO - 10.5802/afst.1760 LA - en ID - AFST_2023_6_32_5_969_0 ER -
%0 Journal Article %A Thomas Dreyfus %A Viktoria Heu %T Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 969-1041 %V 32 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1760/ %R 10.5802/afst.1760 %G en %F AFST_2023_6_32_5_969_0
Thomas Dreyfus; Viktoria Heu. Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 5, pp. 969-1041. doi : 10.5802/afst.1760. https://afst.centre-mersenne.org/articles/10.5802/afst.1760/
[1] Differential embedding problems over complex function fields, Doc. Math., Volume 23 (2018), pp. 241-291 | DOI | MR
[2] On isomonodromic deformations of Fuchsian systems, J. Dyn. Control Syst., Volume 3 (1997) no. 4, pp. 589-604 | DOI | MR
[3] On -summation and confluence, Ann. Inst. Fourier, Volume 59 (2009) no. 1, pp. 347-392 | DOI | Numdam | MR | Zbl
[4] Building meromorphic solutions of -difference equations using a Borel–Laplace summation, Int. Math. Res. Not., Volume 2015 (2014) no. 15, pp. 6562-6587 | DOI | MR
[5] Confluence of meromorphic solutions of -difference equations, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 431-507 | DOI | Numdam | MR
[6] Isomonodromic deformation of -difference equations and confluence, Proc. Am. Math. Soc., Volume 145 (2017) no. 3, pp. 1109-1120 | DOI | MR
[7] Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Volume 63 (1907) no. 3, pp. 301-321 | DOI | MR
[8] Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., Volume 67 (1991) no. 14, p. 1825 | DOI
[9] The meromorphic nature of the sixth Painlevé transcendents, J. Anal. Math., Volume 94 (2004) no. 1, pp. 319-342 | DOI
[10] The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985
[11] Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II, Physica D, Volume 2 (1981) no. 3, pp. 407-448 | DOI
[12] A -analog of the sixth Painlevé equation, Lett. Math. Phys., Volume 38 (1996) no. 2, pp. 145-154 | DOI | Zbl
[13] A direct proof that solutions of the six Painlevé equations have no movable singularities except poles, Stud. Appl. Math., Volume 93 (1994) no. 3, pp. 187-207 | DOI
[14] Geometric aspects of Painlevé equations, J. Phys. A. Math. Theor., Volume 50 (2017) no. 7, p. 073001 | DOI | Zbl
[15] Holomorphic partial differential equations and classical potential theory, Departamento de análisis matemático. Universidad de la Laguna, 1996 | MR
[16] Sur les théoremes I et II de Painlevé, Geometry and Dynamics, International conference in honnour of the 60th Anniversary of Alberto Verjovsky, 2005, Cuernavaca, Mexico. (Contemporary Mathematics), Volume 389, American Mathematical Society (2005), pp. 165-190 | MR
[17] Isomonodromic deformation of Lamé connections, Painlevé VI equation and Okamoto symmetry, Izv. Math., Volume 80 (2016) no. 1, p. 113 | DOI
[18] Asymptotic behaviour around a boundary point of the -Painlevé VI equation and its connection problem, Nonlinearity, Volume 23 (2010) no. 7, p. 1585 | DOI | MR | Zbl
[19] Analytic solutions to the sixth -Painlevé equation around the origin, RIMS Kôkyûroku Bessatsu, Volume B13 (2009), pp. 45-52 | MR | Zbl
[20] Studies on the Painlevé equations, Ann. Mat. Pura Appl., Volume 146 (1986) no. 1, pp. 337-381 | DOI
[21] Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems, J. Reine Angew. Math., Volume 369 (1986), pp. 101-109 | MR | Zbl
[22] Local analytic classification of -difference equations, Astérisque, 355, Société Mathématique de France, 2013, vi+151 pages
[23] Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR
[24] Systèmes aux -différences singuliers réguliers : classification, matrice de connexion et monodromie, Ann. Inst. Fourier, Volume 50 (2000) no. 4, pp. 1021-1071 | DOI | Numdam | MR | Zbl
[25] Une sommation discrète pour des équations aux -différences linéaires et à coefficients analytiques: théorie générale et exemples, Differential equations and the Stokes phenomenon, World Scientific, 2002, pp. 309-329 | DOI | MR | Zbl
Cited by Sources: