For any , we describe all endomorphisms of the braid group and of its commutator subgroup , as well as all homomorphisms . These results are new only for small because endomorphisms of are already described by Castel for , and homomorphisms and endomorphisms of are already described by Kordek and Margalit for . We use very different approaches for and for .
Pour tout nous décrivons tous les endomophismes du groupe de tresses et de son sous-groupe dérivé ainsi que tous les homomorphismes . Ces résultats ne sont nouveaux que pour petits parce que les endomorphismes de sont déjà décrits par Castel pour et les homomorphismes ainsi que les endomorphismes de sont décrits par Kordek et Margalit pour . Nous utilisons des approches très différentes pour et pour .
Accepted:
Published online:
Stepan Yu. Orevkov 1
@article{AFST_2024_6_33_1_105_0, author = {Stepan Yu. Orevkov}, title = {Homomorphisms of commutator subgroups of braid groups with small number of strings}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {105--121}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {1}, year = {2024}, doi = {10.5802/afst.1763}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1763/} }
TY - JOUR AU - Stepan Yu. Orevkov TI - Homomorphisms of commutator subgroups of braid groups with small number of strings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 105 EP - 121 VL - 33 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1763/ DO - 10.5802/afst.1763 LA - en ID - AFST_2024_6_33_1_105_0 ER -
%0 Journal Article %A Stepan Yu. Orevkov %T Homomorphisms of commutator subgroups of braid groups with small number of strings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 105-121 %V 33 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1763/ %R 10.5802/afst.1763 %G en %F AFST_2024_6_33_1_105_0
Stepan Yu. Orevkov. Homomorphisms of commutator subgroups of braid groups with small number of strings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 105-121. doi : 10.5802/afst.1763. https://afst.centre-mersenne.org/articles/10.5802/afst.1763/
[1] Theory of braids, Ann. Math., Volume 48 (1947), pp. 101-126 | DOI | Zbl
[2] Braid groups and the co-Hopfian property, J. Algebra, Volume 303 (2006) no. 1, pp. 275-294 | DOI | Zbl
[3] Abelian and solvable subgroups of the mapping class group, Duke Math. J., Volume 50 (1983), pp. 1107-1120 | Zbl
[4] Geometric representations of the braid groups, Astérisque, 378, Société Mathématique de France, 2016, vi+175 pages | Zbl
[5] The automorphism group of the braid groups, Am. J. Math., Volume 103 (1981), pp. 1151-1169 | DOI | Zbl
[6] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012 | Zbl
[7] The th root of a braid is unique up conjugacy, Algebr. Geom. Topol., Volume 3 (2003), pp. 1103-1118 | DOI | Zbl
[8] On the structure of the centralizer of a braid, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 729-757 | DOI | Numdam | Zbl
[9] Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR, Sb., Volume 7 (1969), pp. 569-596 | DOI | Zbl
[10] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, 1992, xii+127 pages | DOI | Zbl
[11] Homomorphisms of commutator subgroups of braid groups, Bull. Lond. Math. Soc., Volume 54 (2022) no. 1, pp. 95-111 | DOI | Zbl
[12] Braids and Permutations (2004) (https://arxiv.org/abs/math/0404528)
[13] Algebraic functions, configuration spaces, Teichmüller spaces, and new holomorphically combinatorial invariants, Funkts. Anal. Prilozh., Volume 45 (2011) no. 3, pp. 55-78 English transl. in Funct. Anal. Appl 45 (2011), no. 3, p. 204–224 | Zbl
[14] Some problems that I would like to see solved, 2015 (Abstract of a talk. Technion. http://www2.math.technion.ac.il/~pincho/Lin/Abstracts.pdf)
[15] Combinatorial group theory: presentations of groups in terms of generators and relations, Pure and Applied Mathematics, 13, Interscience Publishers, 1966 | Zbl
[16] Algorithmic recognition of quasipositive braids of algebraic length two, J. Algebra, Volume 423 (2015), pp. 1080-1108 | DOI | Zbl
[17] Automorphism group of the commutator subgroup of the braid group, Ann. Fac. Sci. Toulouse, Math., Volume 26 (2017) no. 5, pp. 1137-1161 | DOI | Numdam | Zbl
Cited by Sources: