For each degree and each natural number , we construct on any closed manifold a family of Riemannian metrics, with fixed volume such that the positive eigenvalue of the rough or the Hodge Laplacian acting on differential -forms converges to zero. In particular, on the sphere, we can choose these Riemannian metrics as those of non-negative sectional curvature. This is a generalization of the results by Colbois and Maerten in 2010 to the case of higher degree forms.
Pour chaque degré et chaque entier naturel , nous construisons, sur toute variété compacte, une famille de métriques riemanniennes à volume fixé telle que la valeur propre strictement positive du Laplacien brut ou du Laplacien de Hodge agissant sur les formes différentielles de degré converge vers zéro. En particulier, sur la sphère, nous pouvons choisir des métriques à courbure sectionnelle positive ou nulle. Ce résultat généralise aux plus hauts degrés celui de Colbois et Maerten de 2010.
Accepted:
Published online:
Keywords: rough Laplacian, Hodge–Laplacian, differential forms, eigenvalues
Colette Anné 1; Junya Takahashi 2
@article{AFST_2024_6_33_1_123_0, author = {Colette Ann\'e and Junya Takahashi}, title = {Small eigenvalues of the rough and {Hodge} {Laplacians} under fixed volume}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {123--151}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {1}, year = {2024}, doi = {10.5802/afst.1764}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1764/} }
TY - JOUR AU - Colette Anné AU - Junya Takahashi TI - Small eigenvalues of the rough and Hodge Laplacians under fixed volume JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 123 EP - 151 VL - 33 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1764/ DO - 10.5802/afst.1764 LA - en ID - AFST_2024_6_33_1_123_0 ER -
%0 Journal Article %A Colette Anné %A Junya Takahashi %T Small eigenvalues of the rough and Hodge Laplacians under fixed volume %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 123-151 %V 33 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1764/ %R 10.5802/afst.1764 %G en %F AFST_2024_6_33_1_123_0
Colette Anné; Junya Takahashi. Small eigenvalues of the rough and Hodge Laplacians under fixed volume. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 123-151. doi : 10.5802/afst.1764. https://afst.centre-mersenne.org/articles/10.5802/afst.1764/
[1] -spectrum and collapsing of connected sums, Trans. Am. Math. Soc., Volume 364 (2012) no. 4, pp. 1711-1735 | DOI | Zbl
[2] The spectrum of a Riemannian manifold with a unit Killing vector field, Trans. Am. Math. Soc., Volume 275 (1983), pp. 409-416 | DOI | Zbl
[3] A Cheeger-like inequality for coexact -forms, Duke Math. J., Volume 171 (2022), pp. 3593-3641 | Zbl
[4] A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Princeton Mathematical Series), Volume 31, Princeton University Press, 1970, pp. 195-199 | Zbl
[5] Riemannian metrics with large , Proc. Am. Math. Soc., Volume 122 (1994) no. 3, pp. 905-906 | Zbl
[6] Eigenvalue estimate for the rough Laplacian on differential forms, Manuscr. Math., Volume 132 (2010) no. 3-4, pp. 399-413 | DOI | Zbl
[7] Old and New Aspects in Spectral Geometry, Mathematics and its Applications (Dordrecht), 534, Kluwer Academic Publishers, 2001, ix+445 pages | DOI
[8] Eigenvalues of the Laplacian on forms, Proc. Am. Math. Soc., Volume 85 (1982), pp. 437-443 | DOI | Zbl
[9] Asymptotic behaviour of the Hodge Laplacian spectrum on graph-like manifolds, J. Spectr. Theory, Volume 7 (2017) no. 2, pp. 433-469 | DOI | Zbl
[10] Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl., Volume 54 (1975), pp. 259-284 | Zbl
[11] A class of -dimensional manifolds with bounded first eigenvalue on -forms, Proc. Am. Math. Soc., Volume 127 (1999) no. 9, pp. 2755-2758 | DOI | Zbl
[12] Riemannian metrics with large first eigenvalue on forms of degree , Proc. Am. Math. Soc., Volume 123 (1995) no. 12, pp. 3855-3858 | Zbl
[13] Spectral Geometry, Riemannian submersions, and the Gromov-Lawson Conjecture, Studies in Advanced Mathematics, Chapman & Hall/CRC, 1999, 279 pages
[14] Prescription du spectre du laplacien de Hodge–de Rham, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 270-303 | DOI | Numdam | Zbl
[15] Prescription du spectre du laplacien de Hodge–de Rham dans une classe conforme, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 521-537 | DOI | Zbl
[16] Prescription de la multiplicité des valeurs propres du laplacien de Hodge-de Rham, Comment. Math. Helv., Volume 86 (2011) no. 4, pp. 967-984 | DOI | Zbl
[17] Remark about the spectrum of the -form Laplacian under a collapse with curvature bounded below, Proc. Am. Math. Soc., Volume 132 (2004) no. 3, pp. 911-918 | DOI | Zbl
[18] The -spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann., Volume 297 (1993) no. 4, pp. 725-745 | DOI | Zbl
[19] The first eigenvalue of the Laplacian on even dimensional spheres, Tôhoku Math. J., Volume 32 (1980), pp. 427-432 | Zbl
[20] Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, 2016, xviii+499 pages | DOI
[21] Collapsing of connected sums and the eigenvalues of the Laplacian, J. Geom. Phys., Volume 40 (2002) no. 3-4, pp. 201-208 | DOI | Zbl
[22] On the gap between the first eigenvalues of the Laplacian on functions and -forms, Ann. Global Anal. Geom., Volume 23 (2003) no. 1, pp. 13-27 | DOI | Zbl
[23] Vanishing of cohomology groups and large eigenvalues of the Laplacian on -forms, Math. Z., Volume 250 (2005) no. 1, pp. 43-57 | DOI | Zbl
[24] The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J., Volume 31 (1979), pp. 179-185 | Zbl
[25] Geometric expressions of eigen -forms of the Laplacian on spheres, Spectra of Riemannian Manifolds, Kaigai Publications, 1983, pp. 115-128
Cited by Sources: