Small eigenvalues of the rough and Hodge Laplacians under fixed volume
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 123-151.

For each degree p and each natural number k1, we construct on any closed manifold a family of Riemannian metrics, with fixed volume such that the k th positive eigenvalue of the rough or the Hodge Laplacian acting on differential p-forms converges to zero. In particular, on the sphere, we can choose these Riemannian metrics as those of non-negative sectional curvature. This is a generalization of the results by Colbois and Maerten in 2010 to the case of higher degree forms.

Pour chaque degré p et chaque entier naturel k1, nous construisons, sur toute variété compacte, une famille de métriques riemanniennes à volume fixé telle que la k ième valeur propre strictement positive du Laplacien brut ou du Laplacien de Hodge agissant sur les formes différentielles de degré p converge vers zéro. En particulier, sur la sphère, nous pouvons choisir des métriques à courbure sectionnelle positive ou nulle. Ce résultat généralise aux plus hauts degrés celui de Colbois et Maerten de 2010.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1764
Classification: 58J50, 35P15, 53C21, 58C40
Keywords: rough Laplacian, Hodge–Laplacian, differential forms, eigenvalues

Colette Anné 1; Junya Takahashi 2

1 Laboratoire de Mathématiques Jean Leray, Nantes Université, CNRS, Faculté des Sciences, BP 92208, 44322 Nantes, France
2 Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tôhoku University, 6-3-09 Aoba, Sendai 980-8579, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_1_123_0,
     author = {Colette Ann\'e and Junya Takahashi},
     title = {Small eigenvalues of the rough and {Hodge} {Laplacians} under fixed volume},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {123--151},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     year = {2024},
     doi = {10.5802/afst.1764},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1764/}
}
TY  - JOUR
AU  - Colette Anné
AU  - Junya Takahashi
TI  - Small eigenvalues of the rough and Hodge Laplacians under fixed volume
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 123
EP  - 151
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1764/
DO  - 10.5802/afst.1764
LA  - en
ID  - AFST_2024_6_33_1_123_0
ER  - 
%0 Journal Article
%A Colette Anné
%A Junya Takahashi
%T Small eigenvalues of the rough and Hodge Laplacians under fixed volume
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 123-151
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1764/
%R 10.5802/afst.1764
%G en
%F AFST_2024_6_33_1_123_0
Colette Anné; Junya Takahashi. Small eigenvalues of the rough and Hodge Laplacians under fixed volume. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 123-151. doi : 10.5802/afst.1764. https://afst.centre-mersenne.org/articles/10.5802/afst.1764/

[1] Colette Anné; Junya Takahashi p-spectrum and collapsing of connected sums, Trans. Am. Math. Soc., Volume 364 (2012) no. 4, pp. 1711-1735 | DOI | Zbl

[2] David D. Bleecker The spectrum of a Riemannian manifold with a unit Killing vector field, Trans. Am. Math. Soc., Volume 275 (1983), pp. 409-416 | DOI | Zbl

[3] Adrien Boulanger; Gilles Courtois A Cheeger-like inequality for coexact 1-forms, Duke Math. J., Volume 171 (2022), pp. 3593-3641 | Zbl

[4] Jeff Cheeger A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Princeton Mathematical Series), Volume 31, Princeton University Press, 1970, pp. 195-199 | Zbl

[5] Bruno Colbois; Jozef Dodziuk Riemannian metrics with large λ 1 , Proc. Am. Math. Soc., Volume 122 (1994) no. 3, pp. 905-906 | Zbl

[6] Bruno Colbois; Daniel Maerten Eigenvalue estimate for the rough Laplacian on differential forms, Manuscr. Math., Volume 132 (2010) no. 3-4, pp. 399-413 | DOI | Zbl

[7] Mircea Craioveanu; Mircea Puta; Themistocles M. Rassias Old and New Aspects in Spectral Geometry, Mathematics and its Applications (Dordrecht), 534, Kluwer Academic Publishers, 2001, ix+445 pages | DOI

[8] Jozef Dodziuk Eigenvalues of the Laplacian on forms, Proc. Am. Math. Soc., Volume 85 (1982), pp. 437-443 | DOI | Zbl

[9] Michela Egidi; Olaf Post Asymptotic behaviour of the Hodge Laplacian spectrum on graph-like manifolds, J. Spectr. Theory, Volume 7 (2017) no. 2, pp. 433-469 | DOI | Zbl

[10] Sylvestre Gallot; Daniel Meyer Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl., Volume 54 (1975), pp. 259-284 | Zbl

[11] Giovanni Gentile A class of 3-dimensional manifolds with bounded first eigenvalue on 1-forms, Proc. Am. Math. Soc., Volume 127 (1999) no. 9, pp. 2755-2758 | DOI | Zbl

[12] Giovanni Gentile; V. Pagliara Riemannian metrics with large first eigenvalue on forms of degree p, Proc. Am. Math. Soc., Volume 123 (1995) no. 12, pp. 3855-3858 | Zbl

[13] Peter B. Gilkey; John V. Leahy; Jeonghyeong Park Spectral Geometry, Riemannian submersions, and the Gromov-Lawson Conjecture, Studies in Advanced Mathematics, Chapman & Hall/CRC, 1999, 279 pages

[14] Pierre Guerini Prescription du spectre du laplacien de Hodge–de Rham, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 270-303 | DOI | Numdam | Zbl

[15] Pierre Jammes Prescription du spectre du laplacien de Hodge–de Rham dans une classe conforme, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 521-537 | DOI | Zbl

[16] Pierre Jammes Prescription de la multiplicité des valeurs propres du laplacien de Hodge-de Rham, Comment. Math. Helv., Volume 86 (2011) no. 4, pp. 967-984 | DOI | Zbl

[17] John Lott Remark about the spectrum of the p-form Laplacian under a collapse with curvature bounded below, Proc. Am. Math. Soc., Volume 132 (2004) no. 3, pp. 911-918 | DOI | Zbl

[18] Jeffrey McGowan The p-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann., Volume 297 (1993) no. 4, pp. 725-745 | DOI | Zbl

[19] Hideo Muto The first eigenvalue of the Laplacian on even dimensional spheres, Tôhoku Math. J., Volume 32 (1980), pp. 427-432 | Zbl

[20] Peter Petersen Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, 2016, xviii+499 pages | DOI

[21] Junya Takahashi Collapsing of connected sums and the eigenvalues of the Laplacian, J. Geom. Phys., Volume 40 (2002) no. 3-4, pp. 201-208 | DOI | Zbl

[22] Junya Takahashi On the gap between the first eigenvalues of the Laplacian on functions and p-forms, Ann. Global Anal. Geom., Volume 23 (2003) no. 1, pp. 13-27 | DOI | Zbl

[23] Junya Takahashi Vanishing of cohomology groups and large eigenvalues of the Laplacian on p-forms, Math. Z., Volume 250 (2005) no. 1, pp. 43-57 | DOI | Zbl

[24] Shukichi Tanno The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J., Volume 31 (1979), pp. 179-185 | Zbl

[25] Shukichi Tanno Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian Manifolds, Kaigai Publications, 1983, pp. 115-128

Cited by Sources: