A direct approach to the analytic Bergman projection
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 153-176.

We develop a direct approach to the semiclassical asymptotics for Bergman projections in exponentially weighted spaces of holomorphic functions, with real analytic strictly plurisubharmonic weights. In particular, the approach does not make any direct use of the Kuranishi trick and it allows us to shorten and simplify proofs of a result due to [7] and [23], stating that in the analytic case, the amplitude of the asymptotic Bergman projection is a realization of a classical analytic symbol.

Nous développons une approche directe pour l’asymptotique semiclassique du projecteur de Bergman sur des espaces de fonctions holomorphes à poids exponentiel, dont le poids est analytique et strictement pluri-sous-harmonique. En particulier, cette approche n’utilise jamais directement l’astuce de Kuranishi et nous permet de raccourcir et de simplifier les preuves du fait, établi dans [7] et [23], que dans le cas analytique, l’amplitude du projecteur de Bergman asymptotique est la réalisation d’un symbole analytique classique.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1765

Alix Deleporte 1; Michael Hitrik 2; Johannes Sjöstrand 3

1 Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2 Department of Mathematics, University of California, Los Angeles CA 90095-1555, USA
3 IMB (UMR 5584 CNRS), Université de Bourgogne 9, Av. A. Savary, BP 47870 FR-21078 Dijon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_1_153_0,
     author = {Alix Deleporte and Michael Hitrik and Johannes Sj\"ostrand},
     title = {A direct approach to the analytic {Bergman} projection},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {153--176},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     year = {2024},
     doi = {10.5802/afst.1765},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1765/}
}
TY  - JOUR
AU  - Alix Deleporte
AU  - Michael Hitrik
AU  - Johannes Sjöstrand
TI  - A direct approach to the analytic Bergman projection
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 153
EP  - 176
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1765/
DO  - 10.5802/afst.1765
LA  - en
ID  - AFST_2024_6_33_1_153_0
ER  - 
%0 Journal Article
%A Alix Deleporte
%A Michael Hitrik
%A Johannes Sjöstrand
%T A direct approach to the analytic Bergman projection
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 153-176
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1765/
%R 10.5802/afst.1765
%G en
%F AFST_2024_6_33_1_153_0
Alix Deleporte; Michael Hitrik; Johannes Sjöstrand. A direct approach to the analytic Bergman projection. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 153-176. doi : 10.5802/afst.1765. https://afst.centre-mersenne.org/articles/10.5802/afst.1765/

[1] Robert Berman; Bo Berndtsson; Johannes Sjöstrand A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008) no. 2, pp. 197-217 | DOI | Zbl

[2] Bo Berndtsson An introduction to things ¯, Analytic and algebraic geometry. Common problems, different methods (IAS/Park City Mathematics Series), Volume 17, American Mathematical Society, 2010, pp. 7-76 | DOI | Zbl

[3] David Catlin The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Trends in Mathematics), Birkhäuser, 1997, pp. 1-23 | Zbl

[4] Laurent Charles Analytic Berezin–Toeplitz operators, Math. Z., Volume 299 (2021) no. 1-2, pp. 1015-1035 | DOI | Zbl

[5] Michael Christ On the ¯ equation in weighted L 2 norms in 1 , J. Geom. Anal., Volume 1 (1991) no. 3, pp. 193-230 | Zbl

[6] Lewis A. Coburn; Michael Hitrik; Johannes Sjöstrand Positivity, complex FIOs, and Toeplitz operators, Pure Appl. Anal., Volume 1 (2019) no. 3, pp. 327-357 | DOI | Zbl

[7] Alix Deleporte Toeplitz operators with analytic symbols, J. Geom. Anal., Volume 31 (2021) no. 4, pp. 3915-3967 | DOI | Zbl

[8] Henrik Delin Pointwise estimates for the weighted Bergman projection kernel in n , using a weighted L 2 estimate for the ¯ equation, Ann. Inst. Fourier, Volume 48 (1998) no. 4, pp. 967-997 | DOI | Zbl

[9] Jean-Marc Delort F.B.I. transformation. Second microlocalization and semilinear caustics, Lecture Notes in Mathematics, 1522, Springer, 1992

[10] Hamid Hezari; Zhiqin Lu; Hang Xu Off-diagonal asymptotic properties of Bergman kernels associated to analytic Kähler potentials, Int. Math. Res. Not., Volume 2020 (2020) no. 8, pp. 2241-2286 | DOI | Zbl

[11] Hamid Hezari; Hang Xu On a property of Bergman kernels when the Kähler potential is analytic, Pac. J. Math., Volume 313 (2021) no. 2, pp. 413-432 | DOI | Zbl

[12] Michael Hitrik; Johannes Sjöstrand Analytic second microlocalization: a semiglobal approach (work in progress)

[13] Michael Hitrik; Matthew Stone Asymptotics for Bergman projections with smooth weights: a direct approach, Anal. Math. Phys., Volume 12 (2022) no. 4, 94, 33 pages | DOI | Zbl

[14] Lars Hörmander L 2 estimates and existence theorems for the ¯ operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | Zbl

[15] Lars Hörmander Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994

[16] Masaki Kashiwara Analyse micro-locale du noyau de Bergman, Séminaire Goulaouic-Schwartz 1976-1977. Équations aux dérivées partielles et analyse fonctionnelle, École Polytechnique, Centre de Mathématiques, 1977 | Numdam | Zbl

[17] Yuri A. Kordyukov; Xiaonan Ma; George Marinescu Generalized Bergman kernels on symplectic manifolds of bounded geometry, Commun. Partial Differ. Equations, Volume 44 (2019) no. 11, pp. 1037-1071 | DOI | Zbl

[18] Xiaonan Ma; George Marinescu Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254, Birkhäuser, 2007

[19] George Marinescu; Nikhil Savale Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface, Math. Ann., Volume 389 (2024), pp. 4083-4124 | DOI

[20] Anders Melin; Johannes Sjöstrand Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl. Anal., Volume 9 (2002) no. 2, pp. 177-237 | DOI | Zbl

[21] Louis Boutet de Monvel; Paul Krée Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, Volume 17 (1967) no. 1, pp. 295-323 | DOI | Numdam | Zbl

[22] Louis Boutet de Monvel; Johannes Sjöstrand Sur la singularité des noyaux de Bergman et de Szegö, Proceedings of the conference on partial differential equations, Rennes, France, June 5–7, 1975 (Astérisque), Volume 34-35, Société Mathématique de France, 1976, pp. 123-164 | Zbl

[23] Ophélie Rouby; Johannes Sjöstrand; Vũ Ngọc San Analytic Bergman operators in the semiclassical limit, Duke Math. J., Volume 169 (2020) no. 16, pp. 3033-3097 | Zbl

[24] Johannes Sjöstrand Singularités analytiques microlocales (Astérisque), Volume 95, Société Mathématique de France, 1982, pp. 1-166 | Numdam | Zbl

[25] Steve Zelditch Szegö kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1998 (1998) no. 6, pp. 317-331 | DOI | Zbl

Cited by Sources: