We develop a direct approach to the semiclassical asymptotics for Bergman projections in exponentially weighted spaces of holomorphic functions, with real analytic strictly plurisubharmonic weights. In particular, the approach does not make any direct use of the Kuranishi trick and it allows us to shorten and simplify proofs of a result due to [7] and [23], stating that in the analytic case, the amplitude of the asymptotic Bergman projection is a realization of a classical analytic symbol.
Nous développons une approche directe pour l’asymptotique semiclassique du projecteur de Bergman sur des espaces de fonctions holomorphes à poids exponentiel, dont le poids est analytique et strictement pluri-sous-harmonique. En particulier, cette approche n’utilise jamais directement l’astuce de Kuranishi et nous permet de raccourcir et de simplifier les preuves du fait, établi dans [7] et [23], que dans le cas analytique, l’amplitude du projecteur de Bergman asymptotique est la réalisation d’un symbole analytique classique.
Accepted:
Published online:
Alix Deleporte 1; Michael Hitrik 2; Johannes Sjöstrand 3
@article{AFST_2024_6_33_1_153_0, author = {Alix Deleporte and Michael Hitrik and Johannes Sj\"ostrand}, title = {A direct approach to the analytic {Bergman} projection}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {153--176}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {1}, year = {2024}, doi = {10.5802/afst.1765}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1765/} }
TY - JOUR AU - Alix Deleporte AU - Michael Hitrik AU - Johannes Sjöstrand TI - A direct approach to the analytic Bergman projection JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 153 EP - 176 VL - 33 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1765/ DO - 10.5802/afst.1765 LA - en ID - AFST_2024_6_33_1_153_0 ER -
%0 Journal Article %A Alix Deleporte %A Michael Hitrik %A Johannes Sjöstrand %T A direct approach to the analytic Bergman projection %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 153-176 %V 33 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1765/ %R 10.5802/afst.1765 %G en %F AFST_2024_6_33_1_153_0
Alix Deleporte; Michael Hitrik; Johannes Sjöstrand. A direct approach to the analytic Bergman projection. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 153-176. doi : 10.5802/afst.1765. https://afst.centre-mersenne.org/articles/10.5802/afst.1765/
[1] A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008) no. 2, pp. 197-217 | DOI | Zbl
[2] An introduction to things , Analytic and algebraic geometry. Common problems, different methods (IAS/Park City Mathematics Series), Volume 17, American Mathematical Society, 2010, pp. 7-76 | DOI | Zbl
[3] The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Trends in Mathematics), Birkhäuser, 1997, pp. 1-23 | Zbl
[4] Analytic Berezin–Toeplitz operators, Math. Z., Volume 299 (2021) no. 1-2, pp. 1015-1035 | DOI | Zbl
[5] On the equation in weighted norms in , J. Geom. Anal., Volume 1 (1991) no. 3, pp. 193-230 | Zbl
[6] Positivity, complex FIOs, and Toeplitz operators, Pure Appl. Anal., Volume 1 (2019) no. 3, pp. 327-357 | DOI | Zbl
[7] Toeplitz operators with analytic symbols, J. Geom. Anal., Volume 31 (2021) no. 4, pp. 3915-3967 | DOI | Zbl
[8] Pointwise estimates for the weighted Bergman projection kernel in , using a weighted estimate for the equation, Ann. Inst. Fourier, Volume 48 (1998) no. 4, pp. 967-997 | DOI | Zbl
[9] F.B.I. transformation. Second microlocalization and semilinear caustics, Lecture Notes in Mathematics, 1522, Springer, 1992
[10] Off-diagonal asymptotic properties of Bergman kernels associated to analytic Kähler potentials, Int. Math. Res. Not., Volume 2020 (2020) no. 8, pp. 2241-2286 | DOI | Zbl
[11] On a property of Bergman kernels when the Kähler potential is analytic, Pac. J. Math., Volume 313 (2021) no. 2, pp. 413-432 | DOI | Zbl
[12] Analytic second microlocalization: a semiglobal approach (work in progress)
[13] Asymptotics for Bergman projections with smooth weights: a direct approach, Anal. Math. Phys., Volume 12 (2022) no. 4, 94, 33 pages | DOI | Zbl
[14] estimates and existence theorems for the operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | Zbl
[15] Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994
[16] Analyse micro-locale du noyau de Bergman, Séminaire Goulaouic-Schwartz 1976-1977. Équations aux dérivées partielles et analyse fonctionnelle, École Polytechnique, Centre de Mathématiques, 1977 | Numdam | Zbl
[17] Generalized Bergman kernels on symplectic manifolds of bounded geometry, Commun. Partial Differ. Equations, Volume 44 (2019) no. 11, pp. 1037-1071 | DOI | Zbl
[18] Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254, Birkhäuser, 2007
[19] Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface, Math. Ann., Volume 389 (2024), pp. 4083-4124 | DOI
[20] Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl. Anal., Volume 9 (2002) no. 2, pp. 177-237 | DOI | Zbl
[21] Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, Volume 17 (1967) no. 1, pp. 295-323 | DOI | Numdam | Zbl
[22] Sur la singularité des noyaux de Bergman et de Szegö, Proceedings of the conference on partial differential equations, Rennes, France, June 5–7, 1975 (Astérisque), Volume 34-35, Société Mathématique de France, 1976, pp. 123-164 | Zbl
[23] Analytic Bergman operators in the semiclassical limit, Duke Math. J., Volume 169 (2020) no. 16, pp. 3033-3097 | Zbl
[24] Singularités analytiques microlocales (Astérisque), Volume 95, Société Mathématique de France, 1982, pp. 1-166 | Numdam | Zbl
[25] Szegö kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1998 (1998) no. 6, pp. 317-331 | DOI | Zbl
Cited by Sources: