In the present paper, we show that given a compact Kähler manifold with a Kähler metric (not necessarily Hodge metric) , and a complex submanifold of positive dimension, if has a holomorphic retraction structure in , then any quasi-plurisubharmonic function on such that with can be extended to a quasi-plurisubharmonic function on , such that for some . This gives a partial answer to a question raised by Coman–Guedj–Zeriahi [4].
Dans le présent article, nous montrons que étant donné une variété compacte de kählérienne avec une métrique de kählérienne (pas nécessairement une métrique de Hodge) , et une sous-variété complexe de dimension positif, si a une structure de rétraction holomorphe dans , alors toute fonction quasi-plurisousharmonique sur telle que avec peut être étendue é une fonction quasi-plurisousharmonique sur , telle que pour quelques . Ceci donne une réponse partielle à une question soulevée par Coman–Guedj–Zeriahi [4].
Accepted:
Published online:
Jiafu Ning 1; Zhiwei Wang 2; Xiangyu Zhou 3
@article{AFST_2024_6_33_1_183_0, author = {Jiafu Ning and Zhiwei Wang and Xiangyu Zhou}, title = {On the extension of {K\"ahler} currents on compact {K\"ahler} manifolds: holomorphic retraction case}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {183--195}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {1}, year = {2024}, doi = {10.5802/afst.1767}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1767/} }
TY - JOUR AU - Jiafu Ning AU - Zhiwei Wang AU - Xiangyu Zhou TI - On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 183 EP - 195 VL - 33 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1767/ DO - 10.5802/afst.1767 LA - en ID - AFST_2024_6_33_1_183_0 ER -
%0 Journal Article %A Jiafu Ning %A Zhiwei Wang %A Xiangyu Zhou %T On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 183-195 %V 33 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1767/ %R 10.5802/afst.1767 %G en %F AFST_2024_6_33_1_183_0
Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 183-195. doi : 10.5802/afst.1767. https://afst.centre-mersenne.org/articles/10.5802/afst.1767/
[1] On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | DOI | Zbl
[2] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | Zbl
[3] An extension theorem for Kähler currents with analytic singularities, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 4, pp. 893-905 | DOI | Numdam | Zbl
[4] Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math., Volume 676 (2013), pp. 33-49 | Zbl
[5] On the extension of quasiplurisubharmonic functions, Anal. Math., Volume 48 (2022) no. 2, pp. 411-426 | DOI | Zbl
[6] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl
[7] On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 1, pp. 149-175 | DOI | Numdam | Zbl
[8] Extension problem of a quasi-psh function on Serre’s example, 2021 (personal communication)
[9] A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds, Nihonkai Math. J., Volume 3 (1992) no. 2, pp. 81-85 | Zbl
[10] An ampleness criterion with the extendability of singular positive metrics, Math. Z., Volume 273 (2013) no. 1-2, pp. 43-54 | DOI | Zbl
[11] Asymptotics of Kähler–Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps, Math. Ann., Volume 311 (1998) no. 4, pp. 631-645 | DOI | Zbl
[12] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976) no. 1, pp. 89-100 | Zbl
[13] On the extensions of Kähler currents on compact Kähler manifolds (2020) (https://arxiv.org/abs/2002.11381)
Cited by Sources: