On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 183-195.

In the present paper, we show that given a compact Kähler manifold (X,ω) with a Kähler metric (not necessarily Hodge metric) ω, and a complex submanifold VX of positive dimension, if V has a holomorphic retraction structure in X, then any quasi-plurisubharmonic function φ on V such that ω| V +-1 ¯φεω| V with ε>0 can be extended to a quasi-plurisubharmonic function Φ on X, such that ω+-1 ¯Φε ω for some ε >0. This gives a partial answer to a question raised by Coman–Guedj–Zeriahi [4].

Dans le présent article, nous montrons que étant donné une variété compacte de kählérienne (X,ω) avec une métrique de kählérienne (pas nécessairement une métrique de Hodge) ω, et une sous-variété complexe VX de dimension positif, si V a une structure de rétraction holomorphe dans X, alors toute fonction quasi-plurisousharmonique φ sur V telle que ω| V +-1 ¯φεω| V avec ε>0 peut être étendue é une fonction quasi-plurisousharmonique Φ sur X, telle que ω+-1 ¯Φε ω pour quelques ε >0. Ceci donne une réponse partielle à une question soulevée par Coman–Guedj–Zeriahi [4].

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1767

Jiafu Ning 1; Zhiwei Wang 2; Xiangyu Zhou 3

1 School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, P. R. China
2 Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China
3 Institute of Mathematics, Academy of Mathematics and Systems Sciences, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, 100190, P. R. China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_1_183_0,
     author = {Jiafu Ning and Zhiwei Wang and Xiangyu Zhou},
     title = {On the extension of {K\"ahler} currents on compact {K\"ahler} manifolds: holomorphic retraction case},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {183--195},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     year = {2024},
     doi = {10.5802/afst.1767},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1767/}
}
TY  - JOUR
AU  - Jiafu Ning
AU  - Zhiwei Wang
AU  - Xiangyu Zhou
TI  - On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 183
EP  - 195
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1767/
DO  - 10.5802/afst.1767
LA  - en
ID  - AFST_2024_6_33_1_183_0
ER  - 
%0 Journal Article
%A Jiafu Ning
%A Zhiwei Wang
%A Xiangyu Zhou
%T On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 183-195
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1767/
%R 10.5802/afst.1767
%G en
%F AFST_2024_6_33_1_183_0
Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 183-195. doi : 10.5802/afst.1767. https://afst.centre-mersenne.org/articles/10.5802/afst.1767/

[1] Zbigniew Blocki; Slawomir Kolodziej On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | DOI | Zbl

[2] Sébastien Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | Zbl

[3] Tristan C. Collins; Valentino Tosatti An extension theorem for Kähler currents with analytic singularities, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 4, pp. 893-905 | DOI | Numdam | Zbl

[4] Dan Coman; Vincent Guedj; Ahmed Zeriahi Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math., Volume 676 (2013), pp. 33-49 | Zbl

[5] Dan Coman; Vincent Guedj; Ahmed Zeriahi On the extension of quasiplurisubharmonic functions, Anal. Math., Volume 48 (2022) no. 2, pp. 411-426 | DOI | Zbl

[6] Jean-Pierre Demailly; Mihai Paun Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl

[7] Genki Hosono; Takayuki Koike On metrics with minimal singularities of line bundles whose stable base loci admit holomorphic tubular neighborhoods, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 1, pp. 149-175 | DOI | Numdam | Zbl

[8] Takayuki Koike Extension problem of a quasi-psh function on Serre’s example, 2021 (personal communication)

[9] Kazuko Matsumoto A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds, Nihonkai Math. J., Volume 3 (1992) no. 2, pp. 81-85 | Zbl

[10] Shin-ichi Matsumura An ampleness criterion with the extendability of singular positive metrics, Math. Z., Volume 273 (2013) no. 1-2, pp. 43-54 | DOI | Zbl

[11] Georg Schumacher Asymptotics of Kähler–Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps, Math. Ann., Volume 311 (1998) no. 4, pp. 631-645 | DOI | Zbl

[12] Yum-Tong Siu Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976) no. 1, pp. 89-100 | Zbl

[13] Zhiwei Wang; Xiangyu Zhou On the extensions of Kähler currents on compact Kähler manifolds (2020) (https://arxiv.org/abs/2002.11381)

Cited by Sources: