We study the relationship between the classical Hamilton flow and the quantum Schrödinger evolution where the Hamiltonian is a degree-2 complex-valued polynomial. When the flow obeys a strict positivity condition equivalent to compactness of the evolution operator, we find geometric expressions for the operator norm and a singular-value decomposition of the Schrödinger evolution, using the Hamilton flow. The flow also gives a geometric composition law for these operators, which correspond to a large class of integral operators with nondegenerate Gaussian kernels.
Nous étudions la rélation entre le flot hamiltonien et l’évolution quantique de Schrödinger, où l’hamiltonien est un polynôme de degré 2 à valeurs complexes. Quand le flot vérifie une hypothèse de positivité stricte (qui est équivalente à la compacité de l’opérateur d’évolution), nous trouvons des formules géométriques pour la norme de l’opérateur d’évolution agissant sur ainsi qu’une décomposition en valeurs singulières de cet opérateur, en fonction du flot hamiltonien. Le flot donne aussi une loi pour la composition de ces opérateurs, qui correspondent à une grande classe d’opérateurs à noyaux gaussiens.
Accepted:
Published online:
Joe Viola 1
@article{AFST_2024_6_33_1_237_0, author = {Joe Viola}, title = {The elliptic evolution of non-self-adjoint degree-2 {Hamiltonians}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {237--286}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {1}, year = {2024}, doi = {10.5802/afst.1770}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1770/} }
TY - JOUR AU - Joe Viola TI - The elliptic evolution of non-self-adjoint degree-2 Hamiltonians JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 237 EP - 286 VL - 33 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1770/ DO - 10.5802/afst.1770 LA - en ID - AFST_2024_6_33_1_237_0 ER -
%0 Journal Article %A Joe Viola %T The elliptic evolution of non-self-adjoint degree-2 Hamiltonians %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 237-286 %V 33 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1770/ %R 10.5802/afst.1770 %G en %F AFST_2024_6_33_1_237_0
Joe Viola. The elliptic evolution of non-self-adjoint degree-2 Hamiltonians. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 237-286. doi : 10.5802/afst.1770. https://afst.centre-mersenne.org/articles/10.5802/afst.1770/
[1] Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 8275-8288 | DOI | Zbl
[2] On weak and strong solution operators for evolution equations coming from quadratic operators, J. Spectr. Theory, Volume 8 (2018) no. 1, pp. 33-121 | DOI | Zbl
[3] Gains of integrability and local smoothing effects for quadratic evolution equations, J. Funct. Anal., Volume 285 (2023) no. 10, 110119, 35 pages | DOI | Zbl
[4] Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects, Ann. Sci. Éc. Norm. Supér., Volume 56 (2023) no. 2, pp. 323-382 | DOI | Zbl
[5] On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214 | DOI | MR | Zbl
[6] Quaternionic structure and analysis of some Kramers-Fokker-Planck operators, Asymptotic Anal., Volume 119 (2020) no. 1-2, pp. 87-116 | DOI | Zbl
[7] Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, 2007, xii+451 pages | DOI | MR
[8] Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989, x+277 pages | DOI | MR
[9] From semigroups to subelliptic estimates for quadratic operators, Volume 370, 2018 no. 10, pp. 7391-7415 | DOI | Zbl
[10] Two minicourses on analytic microlocal analysis, Algebraic and analytic microlocal analysis. AAMA, Evanston, Illinois, USA, May 14–26, 2012 and May 20–24, 2013. Contributions of the workshops, Springer, 2018, pp. 483-540 | DOI | Zbl
[11] estimates for Fourier integral operators with complex phase, Ark. Mat., Volume 21 (1983) no. 2, pp. 283-307 | DOI | MR | Zbl
[12] Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995), pp. 413-449 | DOI | Zbl
[13] The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR
[14] The oscillator semigroup, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) (Proceedings of Symposia in Pure Mathematics), Volume 48, American Mathematical Society, 1988, pp. 61-132 | DOI | MR | Zbl
[15] Study of the Kramers–Fokker–Planck quadratic operator with a constant magnetic field, J. Math. Phys., Volume 63 (2022) no. 8, 081503, 31 pages | DOI | Zbl
[16] Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 56 (2015) no. 10, 103513, 32 pages | DOI | MR | Zbl
[17] Lagrangian analysis and quantum mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981, xvii+271 pages (translated from the French by Carolyn Schroeder) | MR
[18] Gaussian kernels have only Gaussian maximizers, Invent. Math., Volume 102 (1990) no. 1, pp. 179-208 | DOI | MR | Zbl
[19] An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002, viii+190 pages | DOI | Numdam | MR
[20] Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Commun. Partial Differ. Equations, Volume 1 (1976) no. 4, pp. 313-400 | DOI | MR | Zbl
[21] Differential operators admitting various rates of spectral projection growth, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3129-3175 pure.qub.ac.uk/ws/files/153172858/misivi_2017.pdf | DOI | Zbl
[22] Boundary pseudospectral behaviour for semiclassical operators in one dimension, Int. Math. Res. Not. (2007) no. 9, rnm029, 31 pages | DOI | MR | Zbl
[23] Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, Math. Nachr., Volume 291 (2018) no. 1, pp. 128-159 | DOI | Zbl
[24] Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130 | DOI | MR | Zbl
[25] Lectures on Resonances, http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf, 2002
[26] The Norm of the non-self-adjoint harmonic oscillator semigroup, Integral Equations Oper. Theory, Volume 4 (2016) no. 2, pp. 513-538 | DOI | Zbl
[27] Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators, Journ. Équ. Dériv. Partielles (2018) (talk:11) | DOI | Numdam
[28] Propagation of global analytic singularities for Schrödinger equations with quadratic Hamiltonians, J. Funct. Anal., Volume 283 (2022) no. 6, 109569, 45 pages | DOI | Zbl
[29] Supersymmetry and Morse theory, J. Differ. Geom., Volume 17 (1982) no. 4, pp. 661-692 | MR | Zbl
[30] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR
Cited by Sources: