The elliptic evolution of non-self-adjoint degree-2 Hamiltonians
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 237-286.

We study the relationship between the classical Hamilton flow and the quantum Schrödinger evolution where the Hamiltonian is a degree-2 complex-valued polynomial. When the flow obeys a strict positivity condition equivalent to compactness of the evolution operator, we find geometric expressions for the L 2 operator norm and a singular-value decomposition of the Schrödinger evolution, using the Hamilton flow. The flow also gives a geometric composition law for these operators, which correspond to a large class of integral operators with nondegenerate Gaussian kernels.

Nous étudions la rélation entre le flot hamiltonien et l’évolution quantique de Schrödinger, où l’hamiltonien est un polynôme de degré 2 à valeurs complexes. Quand le flot vérifie une hypothèse de positivité stricte (qui est équivalente à la compacité de l’opérateur d’évolution), nous trouvons des formules géométriques pour la norme de l’opérateur d’évolution agissant sur L 2 ( n ) ainsi qu’une décomposition en valeurs singulières de cet opérateur, en fonction du flot hamiltonien. Le flot donne aussi une loi pour la composition de ces opérateurs, qui correspondent à une grande classe d’opérateurs à noyaux gaussiens.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1770

Joe Viola 1

1 Nantes Université, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_1_237_0,
     author = {Joe Viola},
     title = {The elliptic evolution of non-self-adjoint degree-2 {Hamiltonians}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {237--286},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     year = {2024},
     doi = {10.5802/afst.1770},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1770/}
}
TY  - JOUR
AU  - Joe Viola
TI  - The elliptic evolution of non-self-adjoint degree-2 Hamiltonians
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 237
EP  - 286
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1770/
DO  - 10.5802/afst.1770
LA  - en
ID  - AFST_2024_6_33_1_237_0
ER  - 
%0 Journal Article
%A Joe Viola
%T The elliptic evolution of non-self-adjoint degree-2 Hamiltonians
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 237-286
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1770/
%R 10.5802/afst.1770
%G en
%F AFST_2024_6_33_1_237_0
Joe Viola. The elliptic evolution of non-self-adjoint degree-2 Hamiltonians. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 1, pp. 237-286. doi : 10.5802/afst.1770. https://afst.centre-mersenne.org/articles/10.5802/afst.1770/

[1] Alexandru Aleman; Joe Viola Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 8275-8288 | DOI | Zbl

[2] Alexandru Aleman; Joe Viola On weak and strong solution operators for evolution equations coming from quadratic operators, J. Spectr. Theory, Volume 8 (2018) no. 1, pp. 33-121 | DOI | Zbl

[3] Paul Alphonse; Joackim Bernier Gains of integrability and local smoothing effects for quadratic evolution equations, J. Funct. Anal., Volume 285 (2023) no. 10, 110119, 35 pages | DOI | Zbl

[4] Paul Alphonse; Joackim Bernier Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects, Ann. Sci. Éc. Norm. Supér., Volume 56 (2023) no. 2, pp. 323-382 | DOI | Zbl

[5] Valentine Bargmann On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214 | DOI | MR | Zbl

[6] Mona Ben Said; Francis Nier; Joe Viola Quaternionic structure and analysis of some Kramers-Fokker-Planck operators, Asymptotic Anal., Volume 119 (2020) no. 1-2, pp. 87-116 | DOI | Zbl

[7] E. Brian Davies Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, 2007, xii+451 pages | DOI | MR

[8] Gerald B. Folland Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989, x+277 pages | DOI | MR

[9] Michael Hitrik; Karel Pravda-Starov; Joe Viola From semigroups to subelliptic estimates for quadratic operators, Volume 370, 2018 no. 10, pp. 7391-7415 | DOI | Zbl

[10] Michael Hitrik; Johannes Sjöstrand Two minicourses on analytic microlocal analysis, Algebraic and analytic microlocal analysis. AAMA, Evanston, Illinois, USA, May 14–26, 2012 and May 20–24, 2013. Contributions of the workshops, Springer, 2018, pp. 483-540 | DOI | Zbl

[11] Lars Hörmander L 2 estimates for Fourier integral operators with complex phase, Ark. Mat., Volume 21 (1983) no. 2, pp. 283-307 | DOI | MR | Zbl

[12] Lars Hörmander Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995), pp. 413-449 | DOI | Zbl

[13] Lars Hörmander The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR

[14] Roger Howe The oscillator semigroup, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) (Proceedings of Symposia in Pure Mathematics), Volume 48, American Mathematical Society, 1988, pp. 61-132 | DOI | MR | Zbl

[15] Zeinab Karaki Study of the Kramers–Fokker–Planck quadratic operator with a constant magnetic field, J. Math. Phys., Volume 63 (2022) no. 8, 081503, 31 pages | DOI | Zbl

[16] David Krejčiřík; Petr Siegl; Miloš Tater; Joe Viola Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 56 (2015) no. 10, 103513, 32 pages | DOI | MR | Zbl

[17] Jean Leray Lagrangian analysis and quantum mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981, xvii+271 pages (translated from the French by Carolyn Schroeder) | MR

[18] Elliott H. Lieb Gaussian kernels have only Gaussian maximizers, Invent. Math., Volume 102 (1990) no. 1, pp. 179-208 | DOI | MR | Zbl

[19] André Martinez An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002, viii+190 pages | DOI | Numdam | MR

[20] Anders Melin; Johannes Sjöstrand Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Commun. Partial Differ. Equations, Volume 1 (1976) no. 4, pp. 313-400 | DOI | MR | Zbl

[21] Boris Mityagin; Petr Siegl; Joe Viola Differential operators admitting various rates of spectral projection growth, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3129-3175 pure.qub.ac.uk/ws/files/153172858/misivi_2017.pdf | DOI | Zbl

[22] Karel Pravda-Starov Boundary pseudospectral behaviour for semiclassical operators in one dimension, Int. Math. Res. Not. (2007) no. 9, rnm029, 31 pages | DOI | MR | Zbl

[23] Karel Pravda-Starov; Luigi Rodino; Patrik Wahlberg Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, Math. Nachr., Volume 291 (2018) no. 1, pp. 128-159 | DOI | Zbl

[24] Johannes Sjöstrand Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130 | DOI | MR | Zbl

[25] Johannes Sjöstrand Lectures on Resonances, http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf, 2002

[26] Joe Viola The Norm of the non-self-adjoint harmonic oscillator semigroup, Integral Equations Oper. Theory, Volume 4 (2016) no. 2, pp. 513-538 | DOI | Zbl

[27] Joe Viola Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators, Journ. Équ. Dériv. Partielles (2018) (talk:11) | DOI | Numdam

[28] Francis White Propagation of global analytic singularities for Schrödinger equations with quadratic Hamiltonians, J. Funct. Anal., Volume 283 (2022) no. 6, 109569, 45 pages | DOI | Zbl

[29] Edward Witten Supersymmetry and Morse theory, J. Differ. Geom., Volume 17 (1982) no. 4, pp. 661-692 | MR | Zbl

[30] Maciej Zworski Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR

Cited by Sources: