A pointed convex cone naturally induces a partial order, and further a notion of nondecreasingness for functions. We consider extended real-valued functions defined on the cone. Monotone conjugates for these functions can be defined in an analogous way to the standard convex conjugate. The only difference is that the supremum is taken over the cone instead of the entire space. We give sufficient conditions for the cone under which the corresponding Fenchel–Moreau biconjugation identity holds for proper, convex, lower semicontinuous, and nondecreasing functions defined on the cone. In addition, we show that these conditions are satisfied by a class of cones known as perfect cones.
Un cône convexe pointu induit naturellement un ordre partiel, et de plus une notion de non-décroissance pour les fonctions. Nous considérons des fonctions étendues à valeurs réelles définies sur le cône. Les conjugués monotones de ces fonctions peuvent être définis de manière analogue au conjugué convexe standard. La seule différence est que le supremum est pris sur le cône au lieu de l’espace entier. Nous donnons des conditions suffisantes pour le cône sous lesquelles l’identité de biconjugaison de Fenchel–Moreau correspondante a lieu pour les fonctions propres, convexes, semi-continues inférieures et non décroissantes définies sur le cône. En outre, nous montrons que ces conditions sont satisfaites par une classe de cônes connue sous le nom de cônes parfaits.
Accepted:
Published online:
Keywords: Fenchel–Moreau identity, monotone conjugate, cone
Hong-Bin Chen 1; Jiaming Xia 2
@article{AFST_2024_6_33_2_287_0, author = {Hong-Bin Chen and Jiaming Xia}, title = {Fenchel{\textendash}Moreau identities on convex cones}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {287--309}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {2}, year = {2024}, doi = {10.5802/afst.1771}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1771/} }
TY - JOUR AU - Hong-Bin Chen AU - Jiaming Xia TI - Fenchel–Moreau identities on convex cones JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 287 EP - 309 VL - 33 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1771/ DO - 10.5802/afst.1771 LA - en ID - AFST_2024_6_33_2_287_0 ER -
%0 Journal Article %A Hong-Bin Chen %A Jiaming Xia %T Fenchel–Moreau identities on convex cones %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 287-309 %V 33 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1771/ %R 10.5802/afst.1771 %G en %F AFST_2024_6_33_2_287_0
Hong-Bin Chen; Jiaming Xia. Fenchel–Moreau identities on convex cones. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 287-309. doi : 10.5802/afst.1771. https://afst.centre-mersenne.org/articles/10.5802/afst.1771/
[1] On Hopf’s formulas for solutions of Hamilton–Jacobi equations, Nonlinear Anal., Theory Methods Appl., Volume 8 (1984) no. 11, pp. 1373-1381 | DOI | Zbl
[2] Faces and duality in convex cones, Linear Multilinear Algebra, Volume 6 (1978) no. 3, pp. 161-169 | DOI | Zbl
[3] Perfect cones, Linear Algebra Appl., Volume 22 (1978), pp. 211-221 | DOI | Zbl
[4] Theory of cones, Linear Algebra Appl., Volume 39 (1981), pp. 263-291 | DOI | Zbl
[5] Self-dual cones in Euclidean spaces, Linear Algebra Appl., Volume 13 (1976) no. 1-2, pp. 147-155 | DOI | Zbl
[6] et al. Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics, 408, Springer, 2011 | DOI
[7] Homogeneous and facially homogeneous self-dual cones, Linear Algebra Appl., Volume 19 (1978) no. 1, pp. 1-16 | DOI | Zbl
[8] Functional analysis, Sobolev spaces and partial differential equations, Springer, 2010
[9] Hamilton–Jacobi equations for nonsymmetric matrix inference, Ann. Appl. Probab., Volume 32 (2022) no. 4, pp. 2540-2567 | DOI | MR | Zbl
[10] Hamilton–Jacobi equations for inference of matrix tensor products, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 58 (2022) no. 2, pp. 755-793 | DOI | MR | Zbl
[11] Monotonic analysis over cones: I, Optimization, Volume 53 (2004) no. 2, pp. 129-146 | DOI | Zbl
[12] Monotonic analysis over cones: II, Optimization, Volume 53 (2004) no. 5-6, pp. 529-547 | DOI | Zbl
[13] Monotonic analysis over cones: III, J. Convex Anal., Volume 15 (2008) no. 3, pp. 561-579 | Zbl
[14] Handbook of generalized convexity and generalized monotonicity, 76, Springer, 2006
[15] Matrix analysis, Cambridge University Press, 2012 | DOI
[16] Hopf formula and multitime Hamilton–Jacobi equations, Proc. Am. Math. Soc., Volume 96 (1986) no. 1, pp. 79-84 | DOI | Zbl
[17] Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl., Volume 49 (1970), pp. 109-154 | Zbl
[18] Hamilton–Jacobi equations for finite-rank matrix inference, Ann. Appl. Probab., Volume 30 (2020) no. 5, pp. 2234-2260 | DOI | MR | Zbl
[19] Hamilton–Jacobi equations for mean-field disordered systems, Ann. Henri Lebesgue, Volume 4 (2021), pp. 453-484 | DOI | Numdam | MR | Zbl
[20] Nonconvex interactions in mean-field spin glasses, Probab. Math. Phys., Volume 2 (2021) no. 2, pp. 281-339 | DOI | MR
[21] The Parisi formula is a Hamilton–Jacobi equation in Wasserstein space, Can. J. Math., Volume 74 (2022) no. 3, pp. 607-629 | DOI | MR | Zbl
[22] Free energy upper bound for mean-field vector spin glasses, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 59 (2023) no. 3, pp. 1143-1182 | Zbl
[23] Self-dual cones in Hilbert space, J. Funct. Anal., Volume 21 (1976) no. 3, pp. 305-315 | DOI | Zbl
[24] Convex analysis, Princeton University Press, 1970 | DOI
[25] Real Analysis, Prentice Hall, 2010
[26] Abstract convex analysis, 25, John Wiley & Sons, 1997
Cited by Sources: