It is well known how the linking number and framing can be extracted from the degree part of the (framed) Kontsevich integral. This note gives a general formula expressing any product of powers of these two invariants as combination of coefficients in the Kontsevich integral. This allows in particular to express the sum of all coefficients of a given degree in terms of the linking coefficients. The proofs are purely combinatorial.
Il est bien connu que l’enlacement et l’auto-enlacement peuvent être extraits de la partie de degré 1 de l’intégrale de Kontsevich (parallélisée). Cette note donne une formule générale, exprimant tout produit de puissances de ces deux invariants comme combinaison de coefficients dans l’intégrale de Kontsevich. Ceci permet en particulier d’exprimer la somme de tous les coefficients en un degré donné en termes de la matrice d’enlacement. Les preuves sont purement combinatoires.
Accepted:
Published online:
Jean-Baptiste Meilhan 1
@article{AFST_2024_6_33_2_349_0, author = {Jean-Baptiste Meilhan}, title = {Linking coefficients and the {Kontsevich} integral}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {349--360}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {2}, year = {2024}, doi = {10.5802/afst.1773}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1773/} }
TY - JOUR AU - Jean-Baptiste Meilhan TI - Linking coefficients and the Kontsevich integral JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 349 EP - 360 VL - 33 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1773/ DO - 10.5802/afst.1773 LA - en ID - AFST_2024_6_33_2_349_0 ER -
%0 Journal Article %A Jean-Baptiste Meilhan %T Linking coefficients and the Kontsevich integral %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 349-360 %V 33 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1773/ %R 10.5802/afst.1773 %G en %F AFST_2024_6_33_2_349_0
Jean-Baptiste Meilhan. Linking coefficients and the Kontsevich integral. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 349-360. doi : 10.5802/afst.1773. https://afst.centre-mersenne.org/articles/10.5802/afst.1773/
[1] On the Vassiliev knot invariants, Topology, Volume 34 (1995) no. 2, pp. 423-472 | DOI | MR | Zbl
[2] Wheels, wheeling, and the Kontsevich integral of the unknot., Isr. J. Math., Volume 119 (2000), pp. 217-237 | DOI | Zbl
[3] Formules combinatoires pour les invariants de nœuds et de variétés de dimension 3, Ph. D. Thesis, Université Grenoble Alpes (2021)
[4] Universal invariants, the Conway polynomial and the Casson-Walker-Lescop invariant (2020) (to appear in Bull. Soc. Math. Fr.) | arXiv
[5] The Kontsevich integral and Milnor’s invariants, Topology, Volume 39 (2000) no. 6, pp. 1253-1289 | DOI | MR | Zbl
[6] Vassiliev’s knot invariants., I. M. Gelfand seminar. Part 2: Papers of the Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993, American Mathematical Society, 1993, pp. 137-150 | DOI | Zbl
[7] The universal Vassiliev-Kontsevich invariant for framed oriented links., Compos. Math., Volume 102 (1996) no. 1, pp. 41-64 | Numdam | Zbl
[8] On a universal perturbative invariant of -manifolds, Topology, Volume 37 (1998) no. 3, pp. 539-574 | DOI | MR | Zbl
[9] Quantum invariants. A study of knots, 3-manifolds, and their sets., Singapore: World Scientific, 2002, xiv + 489 pages | Zbl
[10] Vassiliev invariants of type 4 for algebraically split links., Kobe J. Math., Volume 14 (1997) no. 2, pp. 145-196 | Zbl
[11] On Vassiliev invariants for algebraically split links., J. Knot Theory Ramifications, Volume 7 (1998) no. 6, pp. 807-835 | DOI | Zbl
[12] Some computational results on mod 2 finite-type invariants of knots and string links, Invariants of knots and 3-manifolds. Proceedings of the workshop, Kyoto, Japan, September 17–21, 2001, Geometry and Topology Publications, 2002, pp. 363-376 | Zbl
Cited by Sources: