Linking coefficients and the Kontsevich integral
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 349-360.

It is well known how the linking number and framing can be extracted from the degree 1 part of the (framed) Kontsevich integral. This note gives a general formula expressing any product of powers of these two invariants as combination of coefficients in the Kontsevich integral. This allows in particular to express the sum of all coefficients of a given degree in terms of the linking coefficients. The proofs are purely combinatorial.

Il est bien connu que l’enlacement et l’auto-enlacement peuvent être extraits de la partie de degré 1 de l’intégrale de Kontsevich (parallélisée). Cette note donne une formule générale, exprimant tout produit de puissances de ces deux invariants comme combinaison de coefficients dans l’intégrale de Kontsevich. Ceci permet en particulier d’exprimer la somme de tous les coefficients en un degré donné en termes de la matrice d’enlacement. Les preuves sont purement combinatoires.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1773
Keywords: Kontsevich integral, Jacobi diagrams, linking number, framing

Jean-Baptiste Meilhan 1

1 Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_2_349_0,
     author = {Jean-Baptiste Meilhan},
     title = {Linking coefficients and the {Kontsevich} integral},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {349--360},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {2},
     year = {2024},
     doi = {10.5802/afst.1773},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1773/}
}
TY  - JOUR
AU  - Jean-Baptiste Meilhan
TI  - Linking coefficients and the Kontsevich integral
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 349
EP  - 360
VL  - 33
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1773/
DO  - 10.5802/afst.1773
LA  - en
ID  - AFST_2024_6_33_2_349_0
ER  - 
%0 Journal Article
%A Jean-Baptiste Meilhan
%T Linking coefficients and the Kontsevich integral
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 349-360
%V 33
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1773/
%R 10.5802/afst.1773
%G en
%F AFST_2024_6_33_2_349_0
Jean-Baptiste Meilhan. Linking coefficients and the Kontsevich integral. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 349-360. doi : 10.5802/afst.1773. https://afst.centre-mersenne.org/articles/10.5802/afst.1773/

[1] Dror Bar-Natan On the Vassiliev knot invariants, Topology, Volume 34 (1995) no. 2, pp. 423-472 | DOI | MR | Zbl

[2] Dror Bar-Natan; Stavros Garoufalidis; Lev Rozansky; Dylan P. Thurston Wheels, wheeling, and the Kontsevich integral of the unknot., Isr. J. Math., Volume 119 (2000), pp. 217-237 | DOI | Zbl

[3] Adrien Casejuane Formules combinatoires pour les invariants de nœuds et de variétés de dimension 3, Ph. D. Thesis, Université Grenoble Alpes (2021)

[4] Adrien Casejuane; Jean-Baptiste Meilhan Universal invariants, the Conway polynomial and the Casson-Walker-Lescop invariant (2020) (to appear in Bull. Soc. Math. Fr.) | arXiv

[5] Nathan Habegger; Gregor Masbaum The Kontsevich integral and Milnor’s invariants, Topology, Volume 39 (2000) no. 6, pp. 1253-1289 | DOI | MR | Zbl

[6] Maxim Kontsevich Vassiliev’s knot invariants., I. M. Gelfand seminar. Part 2: Papers of the Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993, American Mathematical Society, 1993, pp. 137-150 | DOI | Zbl

[7] Tu Quoc Thang Le; Jun Murakami The universal Vassiliev-Kontsevich invariant for framed oriented links., Compos. Math., Volume 102 (1996) no. 1, pp. 41-64 | Numdam | Zbl

[8] Tu Quoc Thang Le; Jun Murakami; Tomotada Ohtsuki On a universal perturbative invariant of 3-manifolds, Topology, Volume 37 (1998) no. 3, pp. 539-574 | DOI | MR | Zbl

[9] Tomotada Ohtsuki Quantum invariants. A study of knots, 3-manifolds, and their sets., Singapore: World Scientific, 2002, xiv + 489 pages | Zbl

[10] Miyuki Okamoto Vassiliev invariants of type 4 for algebraically split links., Kobe J. Math., Volume 14 (1997) no. 2, pp. 145-196 | Zbl

[11] Miyuki Okamoto On Vassiliev invariants for algebraically split links., J. Knot Theory Ramifications, Volume 7 (1998) no. 6, pp. 807-835 | DOI | Zbl

[12] Ted Stanford Some computational results on mod 2 finite-type invariants of knots and string links, Invariants of knots and 3-manifolds. Proceedings of the workshop, Kyoto, Japan, September 17–21, 2001, Geometry and Topology Publications, 2002, pp. 363-376 | Zbl

Cited by Sources: