Currents relative to a malnormal subgroup system
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 493-522.

This paper introduces a new topological space associated with a nonabelian free group F n of rank n and a malnormal subgroup system 𝒜 of F n , called the space of currents relative to 𝒜, which are F n -invariant measures on an appropriate subspace of the double boundary of F n . The extension from free factor systems as considered by Gupta to malnormal subgroup systems is necessary in order to fully study the growth under iteration of outer automorphisms of F n , and requires the introduction of new techniques on cylinders. We in particular prove that currents associated with elements of F n which are not contained in a conjugate of a subgroup of 𝒜 are dense in the space of currents relative to 𝒜.

Dans cet article, nous introduisons un nouvel espace topologique associé à un groupe libre non abélien F n de rang n et à un système de sous-groupes malnormal 𝒜 de F n . Appelé espace des courants relatifs à 𝒜, cet espace est constitué de mesures F n -invariantes à support dans un sous-espace approprié du double bord de F n . L’extension du cas des systèmes de facteurs libres considéré par Gupta au cas des systèmes de sous-groupes malnormaux est nécessaire afin d’étudier la croissance sous itération d’automorphismes extérieurs de F n , et requiert l’introduction de nouvelles techniques sur les cylindres. Nous démontrons en particulier que l’ensemble des courants associés aux éléments de F n qui ne sont contenus dans aucun conjugué de sous-groupes de 𝒜 est dense dans l’espace des courants relatifs à 𝒜.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1779
Classification: 20E05, 20E08, 20E36, 20F65
Keywords: Nonabelian free groups, outer automorphism groups, space of currents, group actions on trees

Yassine Guerch 1

1 Laboratoire de mathématique d’Orsay, UMR 8628 CNRS, Université Paris-Saclay, 91405 ORSAY Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_2_493_0,
     author = {Yassine Guerch},
     title = {Currents relative to a malnormal subgroup system},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {493--522},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {2},
     year = {2024},
     doi = {10.5802/afst.1779},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1779/}
}
TY  - JOUR
AU  - Yassine Guerch
TI  - Currents relative to a malnormal subgroup system
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 493
EP  - 522
VL  - 33
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1779/
DO  - 10.5802/afst.1779
LA  - en
ID  - AFST_2024_6_33_2_493_0
ER  - 
%0 Journal Article
%A Yassine Guerch
%T Currents relative to a malnormal subgroup system
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 493-522
%V 33
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1779/
%R 10.5802/afst.1779
%G en
%F AFST_2024_6_33_2_493_0
Yassine Guerch. Currents relative to a malnormal subgroup system. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 493-522. doi : 10.5802/afst.1779. https://afst.centre-mersenne.org/articles/10.5802/afst.1779/

[1] Carolyn R. Abbott; Jason F. Manning Acylindrically hyperbolic groups and their quasi-isometrically embedded subgroups (2022) | arXiv

[2] Mladen Bestvina; Michael Handel Train tracks and automorphisms of free groups, Ann. Math., Volume 135 (1992) no. 1, pp. 1-51 | DOI | Zbl

[3] Francis Bonahon Geodesic currents on negatively curved groups, Arboreal group theory (Roger C. Alperin, ed.) (Mathematical Sciences Research Institute Publications), Volume 19, Springer, pp. 143-168 | DOI | Zbl

[4] Francis Bonahon Bouts des variétés hyperboliques de dimension 3, Ann. Math., Volume 124 (1986), pp. 71-158 | DOI | Zbl

[5] Nicolas Bourbaki Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chap. 1, 2, 3 et 4: Inégalités de convexite. Espaces de Riesz. Mesures sur les espaces localement compacts. Prolongement d’une mesure. Espaces L p , Hermann, 1965

[6] Brian H. Bowditch Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (20012) no. 3, 1250016, 66 pages

[7] Donald L. Cohn Measure theory, Birkhäuser, 1980 | DOI

[8] Thierry Coulbois; Arnaud Hilion; Martin Lustig -trees and laminations for free groups. III. Currents and dual -tree metrics, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 755-766 | DOI | Zbl

[9] Spencer Dowdall; Samuel Taylor Hyperbolic extensions of free groups, Geom. Topol., Volume 22 (2018) no. 1, pp. 517-570 | DOI | Zbl

[10] Viveka Erlandsson; Caglar Uyanik Length functions on currents and applications to dynamics and counting, In the tradition of Thurston, Springer, 2020, pp. 423-458 | DOI | Zbl

[11] Damien Gaboriau; Gilbert Levitt The rank of actions on R-trees, Ann. Scien. Ec. Norm. Sup. (4), Volume 28 (1995), pp. 549-570 | DOI | Numdam | Zbl

[12] Yassince Guerch Polynomial growth and subgroups of Out(F n ) (2022) | arXiv

[13] Yassine Guerch North–South type dynamics of relative atoroidal automorphisms of free groups (2022) | arXiv

[14] Vincent Guirardel; Camille Horbez Algebraic laminations for free products and arational trees, Algebr. Geom. Topol., Volume 19 (2019) no. 5, pp. 2283-2400 | DOI | Zbl

[15] Radhika Gupta Relative currents, Conform. Geom. Dyn., Volume 21 (2017), pp. 319-352 | DOI | Zbl

[16] Michael Handel; Lee Mosher Subgroup Decomposition in Out(F n ), Memoirs of the American Mathematical Society, 1280, AMS, 2020, vii+276 pages

[17] Ilya Kapovich Currents on free groups, Topological and asymptotic aspects of group theory (Contemporary Mathematics), Volume 394, American Mathematical Society, 2006, pp. 149-176 | DOI | Zbl

[18] Ilya Kapovich; Martin Lustig Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol., Volume 13 (2009) no. 3, pp. 1805-1833 | DOI | Zbl

[19] Ilya Kapovich; Kasra Rafi On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 391-414 | DOI | Zbl

[20] Gilbert Levitt Counting growth types of automorphisms of free groups, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1119-1146 | DOI | Zbl

[21] Reiner Martin Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, Ph. D. Thesis, University of California, Los Angeles, USA (1995)

[22] David Ruelle; Dennis Sullivan Currents, flows and diffeomorphisms, Topology, Volume 14 (1975), pp. 319-327 | DOI | Zbl

[23] Eric L. Swenson Quasi-convex groups of isometries of negatively curved spaces, Topology Appl., Volume 110 (2001) no. 1, pp. 119-129 in Geometric topology and geometric group theory (Milwaukee, WI, 1997) | DOI | Zbl

[24] William P. Thurston On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-432 | DOI | Zbl

[25] Caglar Uyanik Generalized north-south dynamics on the space of geodesic currents, Geom. Dedicata, Volume 177 (2015), pp. 129-148 | DOI | Zbl

[26] Caglar Uyanik Hyperbolic extensions of free groups from atoroidal ping-pong, Algebr. Geom. Topol., Volume 19 (2019) no. 3, pp. 1385-1411 | DOI | Zbl

Cited by Sources: