This paper introduces a new topological space associated with a nonabelian free group of rank and a malnormal subgroup system of , called the space of currents relative to , which are -invariant measures on an appropriate subspace of the double boundary of . The extension from free factor systems as considered by Gupta to malnormal subgroup systems is necessary in order to fully study the growth under iteration of outer automorphisms of , and requires the introduction of new techniques on cylinders. We in particular prove that currents associated with elements of which are not contained in a conjugate of a subgroup of are dense in the space of currents relative to .
Dans cet article, nous introduisons un nouvel espace topologique associé à un groupe libre non abélien de rang et à un système de sous-groupes malnormal de . Appelé espace des courants relatifs à , cet espace est constitué de mesures -invariantes à support dans un sous-espace approprié du double bord de . L’extension du cas des systèmes de facteurs libres considéré par Gupta au cas des systèmes de sous-groupes malnormaux est nécessaire afin d’étudier la croissance sous itération d’automorphismes extérieurs de , et requiert l’introduction de nouvelles techniques sur les cylindres. Nous démontrons en particulier que l’ensemble des courants associés aux éléments de qui ne sont contenus dans aucun conjugué de sous-groupes de est dense dans l’espace des courants relatifs à .
Accepted:
Published online:
Keywords: Nonabelian free groups, outer automorphism groups, space of currents, group actions on trees
Yassine Guerch 1
@article{AFST_2024_6_33_2_493_0, author = {Yassine Guerch}, title = {Currents relative to a malnormal subgroup system}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {493--522}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {2}, year = {2024}, doi = {10.5802/afst.1779}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1779/} }
TY - JOUR AU - Yassine Guerch TI - Currents relative to a malnormal subgroup system JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 493 EP - 522 VL - 33 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1779/ DO - 10.5802/afst.1779 LA - en ID - AFST_2024_6_33_2_493_0 ER -
%0 Journal Article %A Yassine Guerch %T Currents relative to a malnormal subgroup system %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 493-522 %V 33 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1779/ %R 10.5802/afst.1779 %G en %F AFST_2024_6_33_2_493_0
Yassine Guerch. Currents relative to a malnormal subgroup system. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 493-522. doi : 10.5802/afst.1779. https://afst.centre-mersenne.org/articles/10.5802/afst.1779/
[1] Acylindrically hyperbolic groups and their quasi-isometrically embedded subgroups (2022) | arXiv
[2] Train tracks and automorphisms of free groups, Ann. Math., Volume 135 (1992) no. 1, pp. 1-51 | DOI | Zbl
[3] Geodesic currents on negatively curved groups, Arboreal group theory (Roger C. Alperin, ed.) (Mathematical Sciences Research Institute Publications), Volume 19, Springer, pp. 143-168 | DOI | Zbl
[4] Bouts des variétés hyperboliques de dimension 3, Ann. Math., Volume 124 (1986), pp. 71-158 | DOI | Zbl
[5] Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chap. 1, 2, 3 et 4: Inégalités de convexite. Espaces de Riesz. Mesures sur les espaces localement compacts. Prolongement d’une mesure. Espaces , Hermann, 1965
[6] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (20012) no. 3, 1250016, 66 pages
[7] Measure theory, Birkhäuser, 1980 | DOI
[8] -trees and laminations for free groups. III. Currents and dual -tree metrics, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 755-766 | DOI | Zbl
[9] Hyperbolic extensions of free groups, Geom. Topol., Volume 22 (2018) no. 1, pp. 517-570 | DOI | Zbl
[10] Length functions on currents and applications to dynamics and counting, In the tradition of Thurston, Springer, 2020, pp. 423-458 | DOI | Zbl
[11] The rank of actions on -trees, Ann. Scien. Ec. Norm. Sup. (4), Volume 28 (1995), pp. 549-570 | DOI | Numdam | Zbl
[12] Polynomial growth and subgroups of (2022) | arXiv
[13] North–South type dynamics of relative atoroidal automorphisms of free groups (2022) | arXiv
[14] Algebraic laminations for free products and arational trees, Algebr. Geom. Topol., Volume 19 (2019) no. 5, pp. 2283-2400 | DOI | Zbl
[15] Relative currents, Conform. Geom. Dyn., Volume 21 (2017), pp. 319-352 | DOI | Zbl
[16] Subgroup Decomposition in , Memoirs of the American Mathematical Society, 1280, AMS, 2020, vii+276 pages
[17] Currents on free groups, Topological and asymptotic aspects of group theory (Contemporary Mathematics), Volume 394, American Mathematical Society, 2006, pp. 149-176 | DOI | Zbl
[18] Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol., Volume 13 (2009) no. 3, pp. 1805-1833 | DOI | Zbl
[19] On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 391-414 | DOI | Zbl
[20] Counting growth types of automorphisms of free groups, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1119-1146 | DOI | Zbl
[21] Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, Ph. D. Thesis, University of California, Los Angeles, USA (1995)
[22] Currents, flows and diffeomorphisms, Topology, Volume 14 (1975), pp. 319-327 | DOI | Zbl
[23] Quasi-convex groups of isometries of negatively curved spaces, Topology Appl., Volume 110 (2001) no. 1, pp. 119-129 in Geometric topology and geometric group theory (Milwaukee, WI, 1997) | DOI | Zbl
[24] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-432 | DOI | Zbl
[25] Generalized north-south dynamics on the space of geodesic currents, Geom. Dedicata, Volume 177 (2015), pp. 129-148 | DOI | Zbl
[26] Hyperbolic extensions of free groups from atoroidal ping-pong, Algebr. Geom. Topol., Volume 19 (2019) no. 3, pp. 1385-1411 | DOI | Zbl
Cited by Sources: