Numerical and Kodaira dimensions of cotangent bundles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 523-573.

We conjecture the equality of the numerical and Kodaira dimensions ν 1 * (X) and κ 1 * (X) for the cotangent bundle of compact Kähler manifolds X, generalising the classical case of the canonical bundle. We show or reduce it to the classical case of the canonical bundle for some peculiar manifolds: among them, the rationally connected ones, or resolutions of varieties with klt singularities and trivial first Chern class, in which case we show that ν 1 * (X)=κ 1 * (X)=q (X)-dim(X), where q (X) is the maximal irregularity of a finite étale cover of X. The proof rests on the Beauville–Bogomolov decomposition, and a direct computation for smooth models of quotients A/G of complex tori by finite groups. We conjecture that these equalities hold true, much more generally, when X is “special”. The invariant κ 1 * was already introduced and studied by Fumio Sakai in [46], the particular case of the preceding conjecture when κ 1 * (X)=-dim(X) was introduced and studied in [31].

Nous conjecturons l’égalité entre les dimensions numérique et de Kodaira ν 1 * (X) et κ 1 * (X) pour le fibré cotangent des variétés Kählériennes compactes X, généralisant le cas classique du fibré canonique. Nous la démontrons ou la réduisons au cas classique du fibré canonique pour certaines classes de variétés, parmi lesquelles : les variétés rationnellement connexes, ainsi que les modèles lisses des variétés à singularités klt et première classe de Chern triviale, pour lesquelles nous montrons que ν 1 * (X)=κ 1 * (X)=q (X)-dim(X), où q (X) est l’irrégularité maximale des revêtements étales de X. La preuve repose sur la décomposition de Bogomolov–Beauville, et un calcul direct pour les modèles lisses des quotients A/G de tores complexes par un groupe fini. Nous conjecturons que ces égalités restent vraies, bien plus généralement, lorsque X est « spéciale ». L’invariant κ 1 * a été introduit et étudié auparavant par Fumio Sakai dans [46], et l’égalité ν 1 * (X) and κ 1 * (X) conjecturée et étudiée lorsque κ 1 * (X)=-dim(X) dans [31].

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1780

Frédéric Campana 1

1 Université Lorraine, Institut Elie Cartan, Nancy, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_2_523_0,
     author = {Fr\'ed\'eric Campana},
     title = {Numerical and {Kodaira} dimensions of cotangent bundles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {523--573},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {2},
     year = {2024},
     doi = {10.5802/afst.1780},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1780/}
}
TY  - JOUR
AU  - Frédéric Campana
TI  - Numerical and Kodaira dimensions of cotangent bundles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 523
EP  - 573
VL  - 33
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1780/
DO  - 10.5802/afst.1780
LA  - en
ID  - AFST_2024_6_33_2_523_0
ER  - 
%0 Journal Article
%A Frédéric Campana
%T Numerical and Kodaira dimensions of cotangent bundles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 523-573
%V 33
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1780/
%R 10.5802/afst.1780
%G en
%F AFST_2024_6_33_2_523_0
Frédéric Campana. Numerical and Kodaira dimensions of cotangent bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 523-573. doi : 10.5802/afst.1780. https://afst.centre-mersenne.org/articles/10.5802/afst.1780/

[1] Benjamin Bakker; Henri Guenancia; Christian Lehn Algebraic approximation and the decomposition theorem for Calabi–Yau Kähler varieties, Invent. Math., Volume 228 (2022) no. 3, pp. 1255-1308 | DOI | Zbl

[2] Wolf Barth; Mogens E. Larsen On the homotopy groups of complex projective algebraic manifolds, Math. Scand., Volume 30 (1972), pp. 88-94 | DOI | Zbl

[3] Wolf Barth; Chris Peters; Antonius Van de Ven Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, Springer, 1984 | DOI

[4] Arnaud Beauville Variétés Kählériennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983), pp. 755-782 | Zbl

[5] Arnaud Beauville Quotients of Jacobians (2022) (https://arxiv.org/abs/2207.00884v2)

[6] Christina Birkenhake; Herbert Lange Complex Abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004 | DOI

[7] Sébastien Boucksom Cônes positifs des variétés complexes compactes, Ph. D. Thesis, Université de Grenoble I (France) (2002)

[8] Sébastien Boucksom; Jean-Pierre Demailly; Mihai Păun; Thomas Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl

[9] Damian Brotbek; Lionel Darondeau Complete intersection varieties with ample cotangent bundles, Invent. Math., Volume 22 (2018), pp. 913-940 | DOI | Zbl

[10] Peter Brückmann; Hans-Goerg Rackwitz T-symmetrical tensor forms on complete intersections, Math. Ann., Volume 288 (1990) no. 4, pp. 627-635 | DOI | Zbl

[11] Yohan Brunebarbe; Frédéric Campana Fundamental group and pluridifferentials on compact Kähler manifolds, Mosc. Math. J., Volume 16 (2016) no. 4, pp. 651-658 | DOI | Zbl

[12] Yohan Brunebarbe; Bruno Klingler; Burt Totaro Symmetric differentials and the fundamental group, Duke Math. J., Volume 162.14 (2013), pp. 2797-2813 | Zbl

[13] Marco Brunella Birational geometry of foliations, Monografías de Matemática (Rio de Janeiro), Instituto de Matemática Pura e Aplicada (IMPA), 2000, 138 pages

[14] Frédéric Campana Twistor spaces of class C, J. Differ. Geom., Volume 33 (1991) no. 2, pp. 541-549 | Zbl

[15] Frédéric Campana Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebr. Geom., Volume 4 (1995) no. 3, pp. 487-502 | Zbl

[16] Frédéric Campana Special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | Zbl

[17] Frédéric Campana Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011) no. 4, pp. 809-934 | DOI | Zbl

[18] Frédéric Campana Orbifold slope-rational connectedness (2016) (https://arxiv.org/abs/1607.07829)

[19] Frédéric Campana Arithmetic aspects of orbifolds pairs, Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces (CRM Short Courses), Springer, 2020, pp. 69-133 | DOI | Zbl

[20] Frédéric Campana La décomposition de Bogomolov-Beauville-Yau des variétés projectives klt à première classe de Chern triviale – sans larmes., Bull. Soc. Math. Fr., Volume 149 (2021) no. 1, pp. 1-13 | DOI | Zbl

[21] Frédéric Campana; Benoît Claudon Quelques propriétés de stabilité des variétés spéciales, Math. Z., Volume 283 (2016) no. 1-2, pp. 581-599 | DOI | Zbl

[22] Frédéric Campana; Mihai Păun Foliations with positive slopes and birational stability of orbifold cotangent bundles, Publ. Math., Inst. Hautes Étud. Sci., Volume 129 (2019), pp. 1-49 | DOI | Zbl

[23] Slawomir Cynk; Klaus Hulek Higher-dimensional modular Calabi-Yau manifolds, Can. Math. Bull., Volume 50 (2007) no. 4, pp. 486-503 | DOI | Zbl

[24] Jean-Pierre Demailly On the Frobenius integrability of certain holomorphic p-forms, Complex geometry, Springer, 2002, pp. 93-98 | DOI | Zbl

[25] Maria Donten-Bury; Jarosław A. Wiśniewski On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32, Kyoto J. Math., Volume 57 (2017) no. 2, pp. 395-434 | Zbl

[26] Cécile Gachet Positivity of the cotangent sheaf of singular Calabi-Yau varieties (2020) (https://arxiv.org/abs/2009.10044, to appear in Math. Res. Lett.)

[27] Cécile Gachet Finite quotients of abelian varieties with a Calabi-Yau resolution (2022) (https://arxiv.org/abs/2201.00619)

[28] Tom Graber; Joe Harris; Jason Starr Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | Zbl

[29] Mark Green; Phillip Griffiths Two Applications of Algebraic Geometry to Entire Holomorphic Mappings, The Chern Symposium 1979. Proceedings of the International Symposium on Differential Geometry, Springer, 1980, pp. 41-74 | DOI | Zbl

[30] Andreas Höring; Thomas Peternell Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | Zbl

[31] Andreas Höring; Thomas Peternell A nonvanishing conjecture for cotangent bundles (2020) (https://arxiv.org/abs/2006.05225)

[32] Yujiro Kawamata On the abundance theorem in the case of numerical Kodaira dimension zero, Am. J. Math., Volume 135 (2013) no. 1, pp. 115-124 | DOI | Zbl

[33] Shoshichi Kobayashi; Takushiro Ochiai On complex manifolds with positive tangent bundles, J. Math. Soc. Japan, Volume 22 (1970), pp. 499-525

[34] János Kollár Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | Zbl

[35] János Kollár; Michael Larsen Quotients of Calabi-Yau varieties, Algebra, arithmetic, and geometry (Progress in Mathematics), Volume 270, Birkhäuser, 2009, pp. 179-211 | DOI | Zbl

[36] János Kollár; Shigefumi Mori Birational geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI | Zbl

[37] Ernesto C. Mistretta Holomorphic symmetric differentials and a birational characterization of Abelian Varieties (2018) (https://arxiv.org/abs/1808.00865)

[38] Yoichi Miyaoka; Shigefumi Mori A numerical criterion for uniruledness, Ann. Math., Volume 124 (1986), pp. 65-69 | DOI | Zbl

[39] Christophe Mourougane Versions kählériennes du théorème d’annulation de Bogomolov, Collect. Math., Volume 49 (1998) no. 2-3, pp. 433-445 | Zbl

[40] Noboru Nakayama Zariski decomposition and Abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiii+277 pages | Zbl

[41] Keiji Oguiso On the complete classification of Calabi–Yau threefolds of type III 0 , Higher dimensional complex varieties, Walter de Gruyter, 1996, pp. 329-339 | Zbl

[42] Keiji Oguiso; Jun Sakurai Calabi-Yau threefolds of quotient type, Asian J. Math., Volume 5 (2001) no. 1, pp. 43-77 | DOI | Zbl

[43] Jorge Vitorio Pereira; Erwan Rousseau; Frédéric Touzet Numerically nonspecial varieties (2021) (https://arxiv.org/abs/2106.12275, to appear in Compos. Math.)

[44] Despina T. Prapavessi On the Jacobian of the Klein curve, Proc. Am. Math. Soc., Volume 122 (1994) no. 4, pp. 971-978 | DOI | Zbl

[45] M. Reid Surfaces of general type with p g =0, K 2 =2 (www.maths.warwick.ac.uk/~miles/surf/K2=2.ps)

[46] Fumio Sakai Symmetric powers of the cotangent bundle and classification of algebraic varieties, Algebraic geometry. Proceedings of the summer meeting (Copenhagen, 1978) (Lecture Notes in Mathematics), Volume 732, Springer, 1979, pp. 545-563 | Zbl

[47] Kohei Sato; Yusuke Sato Crepant property of Fujiki-Oka resolutions for Gorenstein abelian quotient singularities, Nihonkai Math. J., Volume 32 (2021) no. 1, pp. 41-69 | Zbl

[48] Shigeharu Takayama Local simple-connectedness of resolutions of Log-terminal singularities, Int. J. Math., Volume 14 (2003) no. 8, pp. 825-836 | DOI | Zbl

Cited by Sources: