We conjecture the equality of the numerical and Kodaira dimensions and for the cotangent bundle of compact Kähler manifolds , generalising the classical case of the canonical bundle. We show or reduce it to the classical case of the canonical bundle for some peculiar manifolds: among them, the rationally connected ones, or resolutions of varieties with klt singularities and trivial first Chern class, in which case we show that , where is the maximal irregularity of a finite étale cover of . The proof rests on the Beauville–Bogomolov decomposition, and a direct computation for smooth models of quotients of complex tori by finite groups. We conjecture that these equalities hold true, much more generally, when is “special”. The invariant was already introduced and studied by Fumio Sakai in [46], the particular case of the preceding conjecture when was introduced and studied in [31].
Nous conjecturons l’égalité entre les dimensions numérique et de Kodaira et pour le fibré cotangent des variétés Kählériennes compactes , généralisant le cas classique du fibré canonique. Nous la démontrons ou la réduisons au cas classique du fibré canonique pour certaines classes de variétés, parmi lesquelles : les variétés rationnellement connexes, ainsi que les modèles lisses des variétés à singularités klt et première classe de Chern triviale, pour lesquelles nous montrons que , où est l’irrégularité maximale des revêtements étales de . La preuve repose sur la décomposition de Bogomolov–Beauville, et un calcul direct pour les modèles lisses des quotients de tores complexes par un groupe fini. Nous conjecturons que ces égalités restent vraies, bien plus généralement, lorsque est « spéciale ». L’invariant a été introduit et étudié auparavant par Fumio Sakai dans [46], et l’égalité and conjecturée et étudiée lorsque dans [31].
Accepted:
Published online:
Frédéric Campana 1
@article{AFST_2024_6_33_2_523_0, author = {Fr\'ed\'eric Campana}, title = {Numerical and {Kodaira} dimensions of cotangent bundles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {523--573}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {2}, year = {2024}, doi = {10.5802/afst.1780}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1780/} }
TY - JOUR AU - Frédéric Campana TI - Numerical and Kodaira dimensions of cotangent bundles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 523 EP - 573 VL - 33 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1780/ DO - 10.5802/afst.1780 LA - en ID - AFST_2024_6_33_2_523_0 ER -
%0 Journal Article %A Frédéric Campana %T Numerical and Kodaira dimensions of cotangent bundles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 523-573 %V 33 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1780/ %R 10.5802/afst.1780 %G en %F AFST_2024_6_33_2_523_0
Frédéric Campana. Numerical and Kodaira dimensions of cotangent bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 2, pp. 523-573. doi : 10.5802/afst.1780. https://afst.centre-mersenne.org/articles/10.5802/afst.1780/
[1] Algebraic approximation and the decomposition theorem for Calabi–Yau Kähler varieties, Invent. Math., Volume 228 (2022) no. 3, pp. 1255-1308 | DOI | Zbl
[2] On the homotopy groups of complex projective algebraic manifolds, Math. Scand., Volume 30 (1972), pp. 88-94 | DOI | Zbl
[3] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, Springer, 1984 | DOI
[4] Variétés Kählériennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983), pp. 755-782 | Zbl
[5] Quotients of Jacobians (2022) (https://arxiv.org/abs/2207.00884v2)
[6] Complex Abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 2004 | DOI
[7] Cônes positifs des variétés complexes compactes, Ph. D. Thesis, Université de Grenoble I (France) (2002)
[8] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[9] Complete intersection varieties with ample cotangent bundles, Invent. Math., Volume 22 (2018), pp. 913-940 | DOI | Zbl
[10] -symmetrical tensor forms on complete intersections, Math. Ann., Volume 288 (1990) no. 4, pp. 627-635 | DOI | Zbl
[11] Fundamental group and pluridifferentials on compact Kähler manifolds, Mosc. Math. J., Volume 16 (2016) no. 4, pp. 651-658 | DOI | Zbl
[12] Symmetric differentials and the fundamental group, Duke Math. J., Volume 162.14 (2013), pp. 2797-2813 | Zbl
[13] Birational geometry of foliations, Monografías de Matemática (Rio de Janeiro), Instituto de Matemática Pura e Aplicada (IMPA), 2000, 138 pages
[14] Twistor spaces of class , J. Differ. Geom., Volume 33 (1991) no. 2, pp. 541-549 | Zbl
[15] Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebr. Geom., Volume 4 (1995) no. 3, pp. 487-502 | Zbl
[16] Special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | Zbl
[17] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011) no. 4, pp. 809-934 | DOI | Zbl
[18] Orbifold slope-rational connectedness (2016) (https://arxiv.org/abs/1607.07829)
[19] Arithmetic aspects of orbifolds pairs, Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces (CRM Short Courses), Springer, 2020, pp. 69-133 | DOI | Zbl
[20] La décomposition de Bogomolov-Beauville-Yau des variétés projectives klt à première classe de Chern triviale – sans larmes., Bull. Soc. Math. Fr., Volume 149 (2021) no. 1, pp. 1-13 | DOI | Zbl
[21] Quelques propriétés de stabilité des variétés spéciales, Math. Z., Volume 283 (2016) no. 1-2, pp. 581-599 | DOI | Zbl
[22] Foliations with positive slopes and birational stability of orbifold cotangent bundles, Publ. Math., Inst. Hautes Étud. Sci., Volume 129 (2019), pp. 1-49 | DOI | Zbl
[23] Higher-dimensional modular Calabi-Yau manifolds, Can. Math. Bull., Volume 50 (2007) no. 4, pp. 486-503 | DOI | Zbl
[24] On the Frobenius integrability of certain holomorphic -forms, Complex geometry, Springer, 2002, pp. 93-98 | DOI | Zbl
[25] On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32, Kyoto J. Math., Volume 57 (2017) no. 2, pp. 395-434 | Zbl
[26] Positivity of the cotangent sheaf of singular Calabi-Yau varieties (2020) (https://arxiv.org/abs/2009.10044, to appear in Math. Res. Lett.)
[27] Finite quotients of abelian varieties with a Calabi-Yau resolution (2022) (https://arxiv.org/abs/2201.00619)
[28] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | Zbl
[29] Two Applications of Algebraic Geometry to Entire Holomorphic Mappings, The Chern Symposium 1979. Proceedings of the International Symposium on Differential Geometry, Springer, 1980, pp. 41-74 | DOI | Zbl
[30] Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | Zbl
[31] A nonvanishing conjecture for cotangent bundles (2020) (https://arxiv.org/abs/2006.05225)
[32] On the abundance theorem in the case of numerical Kodaira dimension zero, Am. J. Math., Volume 135 (2013) no. 1, pp. 115-124 | DOI | Zbl
[33] On complex manifolds with positive tangent bundles, J. Math. Soc. Japan, Volume 22 (1970), pp. 499-525
[34] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | Zbl
[35] Quotients of Calabi-Yau varieties, Algebra, arithmetic, and geometry (Progress in Mathematics), Volume 270, Birkhäuser, 2009, pp. 179-211 | DOI | Zbl
[36] Birational geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI | Zbl
[37] Holomorphic symmetric differentials and a birational characterization of Abelian Varieties (2018) (https://arxiv.org/abs/1808.00865)
[38] A numerical criterion for uniruledness, Ann. Math., Volume 124 (1986), pp. 65-69 | DOI | Zbl
[39] Versions kählériennes du théorème d’annulation de Bogomolov, Collect. Math., Volume 49 (1998) no. 2-3, pp. 433-445 | Zbl
[40] Zariski decomposition and Abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiii+277 pages | Zbl
[41] On the complete classification of Calabi–Yau threefolds of type , Higher dimensional complex varieties, Walter de Gruyter, 1996, pp. 329-339 | Zbl
[42] Calabi-Yau threefolds of quotient type, Asian J. Math., Volume 5 (2001) no. 1, pp. 43-77 | DOI | Zbl
[43] Numerically nonspecial varieties (2021) (https://arxiv.org/abs/2106.12275, to appear in Compos. Math.)
[44] On the Jacobian of the Klein curve, Proc. Am. Math. Soc., Volume 122 (1994) no. 4, pp. 971-978 | DOI | Zbl
[45] Surfaces of general type with , (www.maths.warwick.ac.uk/~miles/surf/K2=2.ps)
[46] Symmetric powers of the cotangent bundle and classification of algebraic varieties, Algebraic geometry. Proceedings of the summer meeting (Copenhagen, 1978) (Lecture Notes in Mathematics), Volume 732, Springer, 1979, pp. 545-563 | Zbl
[47] Crepant property of Fujiki-Oka resolutions for Gorenstein abelian quotient singularities, Nihonkai Math. J., Volume 32 (2021) no. 1, pp. 41-69 | Zbl
[48] Local simple-connectedness of resolutions of Log-terminal singularities, Int. J. Math., Volume 14 (2003) no. 8, pp. 825-836 | DOI | Zbl
Cited by Sources: