On s’intéresse aux propriétés de décroissance temporelle pour les dérivées des solutions globales à énergie finie des équations de Navier–Stokes dans des domaines généraux bidimensionnels. Les estimations obtenues ne dépendent que de l’ordre de dérivation et de la norme des données initiales. La même méthode élémentaire basée sur les bornes d’énergie et l’inégalité de Ladyzhenskaya conduit également à des résultats de régularité Gevrey.
The present paper is devoted to the proof of time decay estimates for derivatives at any order of finite energy global solutions of the Navier–Stokes equations in general two-dimensional domains. These estimates only depend on the order of derivation and on the norm of the initial data. The same elementary method just based on energy estimates and Ladyzhenskaya inequality also leads to Gevrey regularity results.
Accepté le :
Publié le :
Raphaël Danchin 1

@article{AFST_2024_6_33_5_1215_0, author = {Rapha\"el Danchin}, title = {On the decay and {Gevrey} regularity of the solutions to the {Navier{\textendash}Stokes} equations in general two-dimensional domains}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1215--1232}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {5}, year = {2024}, doi = {10.5802/afst.1797}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1797/} }
TY - JOUR AU - Raphaël Danchin TI - On the decay and Gevrey regularity of the solutions to the Navier–Stokes equations in general two-dimensional domains JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 1215 EP - 1232 VL - 33 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1797/ DO - 10.5802/afst.1797 LA - en ID - AFST_2024_6_33_5_1215_0 ER -
%0 Journal Article %A Raphaël Danchin %T On the decay and Gevrey regularity of the solutions to the Navier–Stokes equations in general two-dimensional domains %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 1215-1232 %V 33 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1797/ %R 10.5802/afst.1797 %G en %F AFST_2024_6_33_5_1215_0
Raphaël Danchin. On the decay and Gevrey regularity of the solutions to the Navier–Stokes equations in general two-dimensional domains. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1215-1232. doi : 10.5802/afst.1797. https://afst.centre-mersenne.org/articles/10.5802/afst.1797/
[1] Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., Volume 205 (2012) no. 3, pp. 963-991 | DOI | MR | Zbl
[2] Algebraic decay for Navier–Stokes flows in exterior domains, Acta Math., Volume 165 (1990) no. 3-4, pp. 189-227 | DOI | MR | Zbl
[3] Le système de Navier–Stokes incompressible soixante dix ans après Jean Leray, Actes des Journées Mathématiques à la Mémoire de Jean Leray (Séminaires et Congrès), Volume 9, Société Mathématique de France, 2004, pp. 99-123 | MR | Zbl
[4] Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations, Oxford Lecture Series in Mathematics and its Applications, 32, Oxford University Press; Clarendon Press, 2006 | DOI | MR | Zbl
[5] On the radius of analyticity of solutions to semi-linear parabolic systems, Math. Res. Lett., Volume 27 (2020) no. 6, pp. 1631-1643 | DOI | MR | Zbl
[6] Navier and Stokes meet Poincaré and Dulac, J. Appl. Anal. Comput., Volume 8 (2018) no. 3, pp. 727-763 | DOI | MR | Zbl
[7] Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal., Volume 87 (1989) no. 2, pp. 359-369 | DOI | MR | Zbl
[8] The Navier–Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J., Volume 29 (1980) no. 5, pp. 639-681 | DOI | MR | Zbl
[9] On decay of weak solutions of the Navier–Stokes equations in , Math. Z., Volume 192 (1986) no. 1, pp. 135-148 | DOI | MR | Zbl
[10] On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier–Stokes equation, Commun. Math. Phys., Volume 70 (1979) no. 2, pp. 97-124 | DOI | MR | Zbl
[11] Solution “in the large” of the nonstationary boundary value problem for the Navier–Stokes system with two space variables, Pure Appl. Math., Volume 12 (1959), pp. 427-433 | DOI | MR | Zbl
[12] Nouvelles remarques sur l’analyticité des solutions milds des équations de Navier–Stokes dans , C. R. Math., Volume 338 (2004) no. 6, pp. 443-446 | DOI | MR | Zbl
[13] Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248 | DOI | MR | Zbl
[14] Un théorème d’existence et unicité dans les équations de Navier–Stokes en dimension 2, C. R. Acad. Sci. Paris, Volume 248 (1959), pp. 3519-3521 | MR | Zbl
[15] Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in , J. Funct. Anal., Volume 172 (2000) no. 1, pp. 1-18 | DOI | MR | Zbl
[16] decay for weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 88 (1985) no. 3, pp. 209-222 | DOI | MR | Zbl
[17] Large time behaviour of solutions to the Navier–Stokes equations, Commun. Partial Differ. Equations, Volume 11 (1986) no. 7, pp. 733-763 | DOI | MR | Zbl
[18] Decay results for weak solutions of the Navier–Stokes equations on ,, J. Lond. Math. Soc. (2), Volume 35 (1987) no. 2, pp. 303-313 | DOI | MR | Zbl
Cité par Sources :