Il remonte à Ahlfors qu’une courbe algébrique réelle admet un morphisme séparant à la droite complexe projective si et seulement si la partie réelle de la courbe déconnecte sa partie complexe, i.e. la courbe est séparante. Le degré d’un tel est borné par en dessous par le nombre de composantes connexes réelles de . L’optimalité de cette borne n’est pas claire a priori. Nous prouvons que les courbes algébriques réelles séparantes, plongées dans une surface ambiante et avec borné d’une certaine manière, n’admettent pas de morphismes séparants de degré le plus petit possible. De plus, ce résultat de non-existence peut être appliqué pour montrer que certaines courbes réelles séparantes planes de degré , n’admettent pas de pinceaux de courbes de degré totalement réels tels que .
It goes back to Ahlfors that a real algebraic curve admits a separating morphism to the complex projective line if and only if the real part of the curve disconnects its complex part, i.e. the curve is separating. The degree of such is bounded from below by the number of real connected components of . The sharpness of this bound is not a priori clear. We prove that real algebraic separating curves, embedded in some ambient surface and with bounded in a certain way, do not admit separating morphisms of lowest possible degree. Moreover, this result of non-existence can be applied to show that certain real separating plane curves of degree , do not admit totally real pencils of curves of degree such that .
Accepté le :
Publié le :
Matilde Manzaroli 1

@article{AFST_2024_6_33_5_1233_0, author = {Matilde Manzaroli}, title = {Obstructions for the existence of separating morphisms and totally real pencils}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1233--1250}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {5}, year = {2024}, doi = {10.5802/afst.1798}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1798/} }
TY - JOUR AU - Matilde Manzaroli TI - Obstructions for the existence of separating morphisms and totally real pencils JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 1233 EP - 1250 VL - 33 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1798/ DO - 10.5802/afst.1798 LA - en ID - AFST_2024_6_33_5_1233_0 ER -
%0 Journal Article %A Matilde Manzaroli %T Obstructions for the existence of separating morphisms and totally real pencils %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 1233-1250 %V 33 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1798/ %R 10.5802/afst.1798 %G en %F AFST_2024_6_33_5_1233_0
Matilde Manzaroli. Obstructions for the existence of separating morphisms and totally real pencils. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1233-1250. doi : 10.5802/afst.1798. https://afst.centre-mersenne.org/articles/10.5802/afst.1798/
[1] Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., Volume 24 (1950), pp. 100-134 | DOI | MR | Zbl
[2] The separating gonality of a separating real curve, Monatsh. Math., Volume 170 (2013), pp. 1-10 | DOI | Zbl
[3] Pencils on real curves, Math. Nachr., Volume 286 (2013) no. 8-9, pp. 799-816 | DOI | MR | Zbl
[4] Topological properties of real algebraic varieties: Rokhlin’s way, Russ. Math. Surv., Volume 55 (2000) no. 4, pp. 735-814 | DOI | MR | Zbl
[5] Eine Beschränkung für die Lage von reellen ebenen algebraischen Kurven, Beitr. Algebra Geom., Volume 11 (1981), pp. 7-19 | MR | Zbl
[6] Totally real pencils of cubics with respect to sextics (2013) | arXiv
[7] Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv., Volume 81 (2006) no. 4, pp. 945-964 | DOI | MR | Zbl
[8] Classification of non-singular 8th order curves on ellipsoid, Methods of the qualitative theory of differential equations, Gor’kov. Gos. Univ., Gorki, 1980, pp. 104-107 | MR
[9] Ueber vieltheiligkeit der ebenen algebraischen Curven, Math. Ann., Volume 10 (1876), pp. 189-198 | DOI | MR
[10] On the geometry of algebraic curves having many real components, Rev. Mat. Complut., Volume 14 (2001) no. 1, pp. 83-92 | DOI | MR | Zbl
[11] Über Flächen dritter Ordnung, Math. Ann., Volume 6 (1873), pp. 551-581 | DOI | MR | Zbl
[12] Real-Fibered Morphisms of del Pezzo Surfaces and Conic Bundles, Discrete Comput. Geom., Volume 69 (2023), pp. 849-872 | DOI | MR | Zbl
[13] Real fibered morphisms and Ulrich sheaves, J. Algebr. Geom., Volume 29 (2020) no. 1, pp. 167-198 | DOI | MR | Zbl
[14] The separating semigroup of a real curve, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 1, pp. 79-96 | DOI | Numdam | MR | Zbl
[15] Real algebraic curves of bidegree (5,5) on the quadric ellipsoid, St. Petersbg. Math. J., Volume 32 (2021) no. 2, pp. 279-306 | DOI | Zbl
[16] Real algebraic curves on real del Pezzo surfaces, Int. Math. Res. Not., Volume 2022 (2022) no. 2, pp. 1350-1413 | DOI | MR | Zbl
[17] La transversalité topologique. Une extension d’un théorème de Rohlin et application au 16e problème de Hilbert, Ph. D. Thesis, Université Paris-Sud, Paris, France (1979) (https://theses.hal.science/tel-04155818/)
[18] Congruences for real algebraic curves on an ellipsoid, Topology of manifolds and varieties (Advances in Soviet Mathematics), Volume 18, American Mathematical Society, 1994, pp. 223-233 | MR | Zbl
[19] Topology of curves of degree 6 on cubic surfaces in , J. Algebr. Geom., Volume 7 (1998) no. 2, pp. 219-237 | MR | Zbl
[20] Complex orientations of plane M-curves of odd degree, Funct. Anal. Appl., Volume 9 (1976), pp. 342-343 | DOI | Zbl
[21] Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse, Math. (6), Volume 12 (2003) no. 4, pp. 517-531 | DOI | Numdam | MR | Zbl
[22] Arrangements of an -quintic with respect to a conic that maximally intersect the odd branch of the quintic, St. Petersbg. Math. J., Volume 19 (2008) no. 4, pp. 625-674 | DOI | MR | Zbl
[23] On the hyperbolicity locus of a real curve, Funct. Anal. Appl., Volume 52 (2018), pp. 151-153 | DOI | Zbl
[24] Algebraically unrealizable complex orientations of plane real pseudoholomorphic curves, Geom. Funct. Anal., Volume 31 (2021), pp. 930-947 | DOI | MR | Zbl
[25] Complex orientations of real algebraic curves, Funct. Anal. Appl., Volume 8 (1974), pp. 331-334 | DOI | Zbl
[26] Complex topological invariants of real algebraic curves on a hyperboloid and an ellipsoid, St. Petersbg. Math. J., Volume 3 (1992) no. 5, pp. 1023-1042 | MR | Zbl
Cité par Sources :