Obstructions for the existence of separating morphisms and totally real pencils
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1233-1250.

Il remonte à Ahlfors qu’une courbe algébrique réelle C admet un morphisme séparant f à la droite complexe projective si et seulement si la partie réelle de la courbe déconnecte sa partie complexe, i.e. la courbe est séparante. Le degré d’un tel f est borné par en dessous par le nombre de composantes connexes réelles de C. L’optimalité de cette borne n’est pas claire a priori. Nous prouvons que les courbes algébriques réelles séparantes, plongées dans une surface ambiante et avec l borné d’une certaine manière, n’admettent pas de morphismes séparants de degré le plus petit possible. De plus, ce résultat de non-existence peut être appliqué pour montrer que certaines courbes réelles séparantes planes de degré d, n’admettent pas de pinceaux de courbes de degré k totalement réels tels que kdl.

It goes back to Ahlfors that a real algebraic curve C admits a separating morphism f to the complex projective line if and only if the real part of the curve disconnects its complex part, i.e. the curve is separating. The degree of such f is bounded from below by the number l of real connected components of C. The sharpness of this bound is not a priori clear. We prove that real algebraic separating curves, embedded in some ambient surface and with l bounded in a certain way, do not admit separating morphisms of lowest possible degree. Moreover, this result of non-existence can be applied to show that certain real separating plane curves of degree d, do not admit totally real pencils of curves of degree k such that kdl.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1798

Matilde Manzaroli 1

1 Universität Tübingen, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_5_1233_0,
     author = {Matilde Manzaroli},
     title = {Obstructions for the existence of separating morphisms and totally real pencils},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1233--1250},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {5},
     year = {2024},
     doi = {10.5802/afst.1798},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1798/}
}
TY  - JOUR
AU  - Matilde Manzaroli
TI  - Obstructions for the existence of separating morphisms and totally real pencils
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1233
EP  - 1250
VL  - 33
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1798/
DO  - 10.5802/afst.1798
LA  - en
ID  - AFST_2024_6_33_5_1233_0
ER  - 
%0 Journal Article
%A Matilde Manzaroli
%T Obstructions for the existence of separating morphisms and totally real pencils
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1233-1250
%V 33
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1798/
%R 10.5802/afst.1798
%G en
%F AFST_2024_6_33_5_1233_0
Matilde Manzaroli. Obstructions for the existence of separating morphisms and totally real pencils. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1233-1250. doi : 10.5802/afst.1798. https://afst.centre-mersenne.org/articles/10.5802/afst.1798/

[1] Lars V. Ahlfors Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., Volume 24 (1950), pp. 100-134 | DOI | MR | Zbl

[2] Marc Coppens The separating gonality of a separating real curve, Monatsh. Math., Volume 170 (2013), pp. 1-10 | DOI | Zbl

[3] Marc Coppens; Johannes Huisman Pencils on real curves, Math. Nachr., Volume 286 (2013) no. 8-9, pp. 799-816 | DOI | MR | Zbl

[4] Alex I. Degtyarev; Viatcheslav M. Kharlamov Topological properties of real algebraic varieties: Rokhlin’s way, Russ. Math. Surv., Volume 55 (2000) no. 4, pp. 735-814 | DOI | MR | Zbl

[5] Thomas Fiedler Eine Beschränkung für die Lage von reellen ebenen algebraischen Kurven, Beitr. Algebra Geom., Volume 11 (1981), pp. 7-19 | MR | Zbl

[6] Séverine Fiedler-Le Touzé Totally real pencils of cubics with respect to sextics (2013) | arXiv

[7] Alexandre Gabard Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv., Volume 81 (2006) no. 4, pp. 945-964 | DOI | MR | Zbl

[8] Dmitriĭ A. Gudkov; Eugenii I. Shustin Classification of non-singular 8th order curves on ellipsoid, Methods of the qualitative theory of differential equations, Gor’kov. Gos. Univ., Gorki, 1980, pp. 104-107 | MR

[9] Axel Harnack Ueber vieltheiligkeit der ebenen algebraischen Curven, Math. Ann., Volume 10 (1876), pp. 189-198 | DOI | MR

[10] Johannes Huisman On the geometry of algebraic curves having many real components, Rev. Mat. Complut., Volume 14 (2001) no. 1, pp. 83-92 | DOI | MR | Zbl

[11] Felix Klein Über Flächen dritter Ordnung, Math. Ann., Volume 6 (1873), pp. 551-581 | DOI | MR | Zbl

[12] Mario Kummer; Cédric Le Texier; Matilde Manzaroli Real-Fibered Morphisms of del Pezzo Surfaces and Conic Bundles, Discrete Comput. Geom., Volume 69 (2023), pp. 849-872 | DOI | MR | Zbl

[13] Mario Kummer; Eli Shamovich Real fibered morphisms and Ulrich sheaves, J. Algebr. Geom., Volume 29 (2020) no. 1, pp. 167-198 | DOI | MR | Zbl

[14] Mario Kummer; Kristin Shaw The separating semigroup of a real curve, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 1, pp. 79-96 | DOI | Numdam | MR | Zbl

[15] Matilde Manzaroli Real algebraic curves of bidegree (5,5) on the quadric ellipsoid, St. Petersbg. Math. J., Volume 32 (2021) no. 2, pp. 279-306 | DOI | Zbl

[16] Matilde Manzaroli Real algebraic curves on real del Pezzo surfaces, Int. Math. Res. Not., Volume 2022 (2022) no. 2, pp. 1350-1413 | DOI | MR | Zbl

[17] Alexis Marin La transversalité topologique. Une extension d’un théorème de Rohlin et application au 16e problème de Hilbert, Ph. D. Thesis, Université Paris-Sud, Paris, France (1979) (https://theses.hal.science/tel-04155818/)

[18] Grigory B. Mikhalkin Congruences for real algebraic curves on an ellipsoid, Topology of manifolds and varieties (Advances in Soviet Mathematics), Volume 18, American Mathematical Society, 1994, pp. 223-233 | MR | Zbl

[19] Grigory B. Mikhalkin Topology of curves of degree 6 on cubic surfaces in ℝℙ 3 , J. Algebr. Geom., Volume 7 (1998) no. 2, pp. 219-237 | MR | Zbl

[20] Nikolai M. Mishachev Complex orientations of plane M-curves of odd degree, Funct. Anal. Appl., Volume 9 (1976), pp. 342-343 | DOI | Zbl

[21] Stepan Yu. Orevkov Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse, Math. (6), Volume 12 (2003) no. 4, pp. 517-531 | DOI | Numdam | MR | Zbl

[22] Stepan Yu. Orevkov Arrangements of an M-quintic with respect to a conic that maximally intersect the odd branch of the quintic, St. Petersbg. Math. J., Volume 19 (2008) no. 4, pp. 625-674 | DOI | MR | Zbl

[23] Stepan Yu. Orevkov On the hyperbolicity locus of a real curve, Funct. Anal. Appl., Volume 52 (2018), pp. 151-153 | DOI | Zbl

[24] Stepan Yu. Orevkov Algebraically unrealizable complex orientations of plane real pseudoholomorphic curves, Geom. Funct. Anal., Volume 31 (2021), pp. 930-947 | DOI | MR | Zbl

[25] Vladimir A. Rokhlin Complex orientations of real algebraic curves, Funct. Anal. Appl., Volume 8 (1974), pp. 331-334 | DOI | Zbl

[26] Victor I. Zvonilov Complex topological invariants of real algebraic curves on a hyperboloid and an ellipsoid, St. Petersbg. Math. J., Volume 3 (1992) no. 5, pp. 1023-1042 | MR | Zbl

Cité par Sources :