Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1251-1295.

Nous effectuons l’analyse asymptotique classique pour l’énergie de Ginzburg–Landau provenant du célèbre papier de Bethuel, Brezis, Hélein pour des données non lisses au bord. Plus précisément, nous donnons des hypothèses optimales de régularité sur la courbe qui borde le domaine plan et sur la condition de Dirichlet. Quand la donnée de Dirichlet est le champ de vecteur unitaire tangent de la courbe du bord, notre travail permet de définir un repère mobile d’énergie minimale sur les domaines simplement connexes bordés par une courbe Weil–Petersson.

We perform the classical asymptotic analysis for the Ginzburg–Landau energy which originates from the celebrated paper by Bethuel, Brezis, Hélein for nonsmooth boundary data. More precisely, we give optimal regularity assumptions on the boundary curve of planar domains and Dirichlet boundary data on them. When the Dirichlet boundary data is the tangent vector field of the boundary curve, our framework allows us to define a natural energy minimizing frame for simply connected domains enclosing Weil–Petersson curves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1799

Paul Laurain 1 ; Romain Petrides 1

1 Institut de Mathématiques de Jussieu – Paris Rive Gauche, Université Paris Cité, Bâtiment Sophie Germain, Case 7052, 75205 Paris Cedex 13, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_5_1251_0,
     author = {Paul Laurain and Romain Petrides},
     title = {Asymptotics for minimizers of the {Ginzburg{\textendash}Landau} energy with optimal regularity of the boundary data and applications},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1251--1295},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {5},
     year = {2024},
     doi = {10.5802/afst.1799},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1799/}
}
TY  - JOUR
AU  - Paul Laurain
AU  - Romain Petrides
TI  - Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1251
EP  - 1295
VL  - 33
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1799/
DO  - 10.5802/afst.1799
LA  - en
ID  - AFST_2024_6_33_5_1251_0
ER  - 
%0 Journal Article
%A Paul Laurain
%A Romain Petrides
%T Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1251-1295
%V 33
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1799/
%R 10.5802/afst.1799
%G en
%F AFST_2024_6_33_5_1251_0
Paul Laurain; Romain Petrides. Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1251-1295. doi : 10.5802/afst.1799. https://afst.centre-mersenne.org/articles/10.5802/afst.1799/

[1] Fabrice Bethuel; Haïm Brezis; Frédéric Hélein Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 1 (1993) no. 2, pp. 123-148 | DOI | MR | Zbl

[2] Fabrice Bethuel; Haïm Brezis; Frédéric Hélein Ginzburg–Landau vortices, Modern Birkhäuser Classics, Birkhäuser; Springer, 2017 (reprint of the 1994 edition) | DOI | MR | Zbl

[3] Arne Beurling; Lars V. Ahlfors The boundary correspondence under quasiconformal mappings, Acta Math., Volume 96 (1956), pp. 125-142 | DOI | MR | Zbl

[4] Christopher J. Bishop Function theoretic characterizations of Weil–Petersson curves, 2022 (http://www.math.stonybrook.edu/~bishop/papers/wp_fcnthy.pdf)

[5] Christopher J. Bishop Weil–Petersson curves, beta-numbers, and minimal surfaces, 2024 (http://www.math.stonybrook.edu/~bishop/papers/wpce.pdf)

[6] Haïm Brezis; Frank Merle; Tristan Rivière Quantization effects for -Δu=u(1-|u| 2 ) in R 2 , Arch. Ration. Mech. Anal., Volume 126 (1994) no. 1, pp. 35-58 | DOI | MR | Zbl

[7] Haïm Brezis; Louis Nirenberg Degree theory and BMO. I. Compact manifolds without boundaries, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | MR | Zbl

[8] Luis A. Caffarelli; Avner Friedman Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985) no. 2, pp. 431-456 | DOI | MR | Zbl

[9] Kung-Ching Chang; Jia-Quan Liu A prescribing geodesic curvature problem, Math. Z., Volume 223 (1996) no. 2, pp. 343-365 | DOI | MR | Zbl

[10] Shiing-shen Chern An elementary proof of the existence of isothermal parameters on a surface, Proc. Am. Math. Soc., Volume 6 (1955), pp. 771-782 | DOI | MR | Zbl

[11] Otis Chodosh; Christos Mantoulidis Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. Math. (2), Volume 191 (2020) no. 1, pp. 213-328 | DOI | MR | Zbl

[12] Alberto Farina; Petru Mironescu Uniqueness of vortexless Ginzburg–Landau type minimizers in two dimensions, Calc. Var. Partial Differ. Equ., Volume 46 (2013) no. 3-4, pp. 523-554 | DOI | MR | Zbl

[13] Martin Flucher Extremal functions for the Trudinger–Moser inequality in 2 dimensions, Comment. Math. Helv., Volume 67 (1992) no. 3, pp. 471-497 | DOI | MR | Zbl

[14] John B. Garnett Bounded analytic functions, Graduate Texts in Mathematics, 236, Springer, 2007 | DOI | MR | Zbl

[15] Marco A. M. Guaraco Min-max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differ. Geom., Volume 108 (2018) no. 1, pp. 91-133 | DOI | MR | Zbl

[16] Frédéric Hélein Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics, 150, Cambridge University Press, 2002 (translated from the 1996 French original, with a foreword by James Eells) | DOI | MR | Zbl

[17] John H. Hubbard Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1. Teichmüller theory, Matrix Editions, Ithaca, NY, 2006 (with contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra. with forewords by William Thurston and Clifford Earle) | MR | Zbl

[18] Radu Ignat; Robert L. Jerrard Renormalized energy between vortices in some Ginzburg–Landau models on 2-dimensional Riemannian manifolds, Arch. Ration. Mech. Anal., Volume 239 (2021) no. 3, pp. 1577-1666 | DOI | MR | Zbl

[19] Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu On the uniqueness of minimisers of Ginzburg–Landau functionals, Ann. Sci. Éc. Norm. Supér. (4), Volume 53 (2020) no. 3, pp. 589-613 | DOI | MR | Zbl

[20] Robert L. Jerrard Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal., Volume 30 (1999) no. 4, pp. 721-746 | DOI | MR | Zbl

[21] Miao Jin; Xianfeng Gu; Ying He; Yalin Wang Conformal geometry. Computational algorithms and engineering applications, Springer, 2018 | DOI | MR | Zbl

[22] Fritz John; Louis Nirenberg On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl

[23] Tobias Lamm; Longzhi Lin Estimates for the energy density of critical points of a class of conformally invariant variational problems, Adv. Calc. Var., Volume 6 (2013) no. 4, pp. 391-413 | DOI | MR | Zbl

[24] Paul Laurain; Romain Petrides Existence of min-max free boundary disks realizing the width of a manifold, Adv. Math., Volume 352 (2019), pp. 326-371 | DOI | MR | Zbl

[25] Alexis Michelat; Yilin Wang Loewner Energy as the Renormalised Energy of Moving Frames and Surfaces of Finite Willmore Energy Bounding Weil–Petersson Curves (2021) (preprint)

[26] Vincent Millot; Adriano Pisante Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc., Volume 12 (2010) no. 5, pp. 1069-1096 | DOI | MR | Zbl

[27] Antonin Monteil; Rémy Rodiac; Jean Van Schaftingen Ginzburg–Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 2, pp. 875-935 | DOI | MR | Zbl

[28] Anne Boutet de Monvel-Berthier; Vladimir Georgescu; Radu Purice A boundary value problem related to the Ginzburg–Landau model, Commun. Math. Phys., Volume 142 (1991) no. 1, pp. 1-23 | DOI | MR | Zbl

[29] Édouard Oudet; Chiu-Yen Kao; Braxton Osting Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems, ESAIM, Control Optim. Calc. Var., Volume 27 (2021), 34 | DOI | MR | Zbl

[30] Frank Pacard; Tristan Rivière Linear and nonlinear aspects of vortices. The Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser, 2000 | DOI | MR | Zbl

[31] Manuel del Pino; Patricio L. Felmer On the basic concentration estimate for the Ginzburg–Landau equation, Differ. Integral Equ., Volume 11 (1998) no. 5, pp. 771-779 | MR | Zbl

[32] Christian Pommerenke Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer, 1992 | DOI | MR | Zbl

[33] Tristan Rivière Asymptotic analysis for the Ginzburg-Landau equations, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 2 (1999) no. 3, pp. 537-575 | MR | Zbl

[34] Tristan Rivière Weak immersions of surfaces with L 2 -bounded second fundamental form, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society; Institute for Advanced Study, 2016, pp. 303-384 | DOI | MR | Zbl

[35] Steffen Rohde; Yilin Wang The Loewner energy of loops and regularity of driving functions, Int. Math. Res. Not., Volume 2021 (2021) no. 10, pp. 7715-7763 | DOI | MR | Zbl

[36] Etienne Sandier Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., Volume 152 (1998) no. 2, pp. 379-403 | DOI | MR | Zbl

[37] Etienne Sandier Erratum: “Lower bounds for the energy of unit vector fields and applications” [J. Funct. Anal. 152 (1998), no. 2, 379–403; MR1607928 (99b:58056)], J. Funct. Anal., Volume 171 (2000) no. 1, p. 233 | DOI | MR | Zbl

[38] Etienne Sandier; Sylvia Serfaty Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2007 | DOI | MR | Zbl

[39] Reiner Michael Schätzle Estimation of the conformal factor under bounded Willmore energy, Math. Z., Volume 274 (2013) no. 3-4, pp. 1341-1383 | DOI | MR | Zbl

[40] Stephen Semmes A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Commun. Partial Differ. Equations, Volume 19 (1994) no. 1-2, pp. 277-319 | DOI | MR | Zbl

[41] Michael Struwe On the asymptotic behavior of minimizers of the Ginzburg–Landau model in 2 dimensions, Differ. Integral Equ., Volume 7 (1994) no. 5-6, pp. 1613-1624 | MR | Zbl

[42] Michael Struwe Erratum: “On the asymptotic behavior of minimizers of the Ginzburg–Landau model in 2 dimensions”, Differ. Integral Equ., Volume 8 (1995) no. 1, p. 224 | MR | Zbl

[43] Leon A. Takhtajan; Lee-Peng Teo Weil–Petersson metric on the universal Teichmüller space, Memoirs of the American Mathematical Society, 861, American Mathematical Society, 2006 | DOI | Zbl

[44] Yilin Wang Equivalent descriptions of the Loewner energy, Invent. Math., Volume 218 (2019) no. 2, pp. 573-621 | DOI | MR | Zbl

[45] Frank W. Warner Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer, 1983 | DOI | MR | Zbl

[46] Xiaotian Yin; Junfei Dai; Shing-Tung Yau; Xianfeng Gu Slit map: conformal parameterization for multiply connected surfaces, Advances in geometric modeling and processing. GMP 2008 (Lecture Notes in Computer Science), Volume 4975, Springer, 2008, pp. 410-422 | DOI | MR

Cité par Sources :