Nous effectuons l’analyse asymptotique classique pour l’énergie de Ginzburg–Landau provenant du célèbre papier de Bethuel, Brezis, Hélein pour des données non lisses au bord. Plus précisément, nous donnons des hypothèses optimales de régularité sur la courbe qui borde le domaine plan et sur la condition de Dirichlet. Quand la donnée de Dirichlet est le champ de vecteur unitaire tangent de la courbe du bord, notre travail permet de définir un repère mobile d’énergie minimale sur les domaines simplement connexes bordés par une courbe Weil–Petersson.
We perform the classical asymptotic analysis for the Ginzburg–Landau energy which originates from the celebrated paper by Bethuel, Brezis, Hélein for nonsmooth boundary data. More precisely, we give optimal regularity assumptions on the boundary curve of planar domains and Dirichlet boundary data on them. When the Dirichlet boundary data is the tangent vector field of the boundary curve, our framework allows us to define a natural energy minimizing frame for simply connected domains enclosing Weil–Petersson curves.
Accepté le :
Publié le :
Paul Laurain 1 ; Romain Petrides 1

@article{AFST_2024_6_33_5_1251_0, author = {Paul Laurain and Romain Petrides}, title = {Asymptotics for minimizers of the {Ginzburg{\textendash}Landau} energy with optimal regularity of the boundary data and applications}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1251--1295}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {5}, year = {2024}, doi = {10.5802/afst.1799}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1799/} }
TY - JOUR AU - Paul Laurain AU - Romain Petrides TI - Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 1251 EP - 1295 VL - 33 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1799/ DO - 10.5802/afst.1799 LA - en ID - AFST_2024_6_33_5_1251_0 ER -
%0 Journal Article %A Paul Laurain %A Romain Petrides %T Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 1251-1295 %V 33 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1799/ %R 10.5802/afst.1799 %G en %F AFST_2024_6_33_5_1251_0
Paul Laurain; Romain Petrides. Asymptotics for minimizers of the Ginzburg–Landau energy with optimal regularity of the boundary data and applications. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1251-1295. doi : 10.5802/afst.1799. https://afst.centre-mersenne.org/articles/10.5802/afst.1799/
[1] Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., Volume 1 (1993) no. 2, pp. 123-148 | DOI | MR | Zbl
[2] Ginzburg–Landau vortices, Modern Birkhäuser Classics, Birkhäuser; Springer, 2017 (reprint of the 1994 edition) | DOI | MR | Zbl
[3] The boundary correspondence under quasiconformal mappings, Acta Math., Volume 96 (1956), pp. 125-142 | DOI | MR | Zbl
[4] Function theoretic characterizations of Weil–Petersson curves, 2022 (http://www.math.stonybrook.edu/~bishop/papers/wp_fcnthy.pdf)
[5] Weil–Petersson curves, beta-numbers, and minimal surfaces, 2024 (http://www.math.stonybrook.edu/~bishop/papers/wpce.pdf)
[6] Quantization effects for in , Arch. Ration. Mech. Anal., Volume 126 (1994) no. 1, pp. 35-58 | DOI | MR | Zbl
[7] Degree theory and BMO. I. Compact manifolds without boundaries, Sel. Math., New Ser., Volume 1 (1995) no. 2, pp. 197-263 | DOI | MR | Zbl
[8] Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985) no. 2, pp. 431-456 | DOI | MR | Zbl
[9] A prescribing geodesic curvature problem, Math. Z., Volume 223 (1996) no. 2, pp. 343-365 | DOI | MR | Zbl
[10] An elementary proof of the existence of isothermal parameters on a surface, Proc. Am. Math. Soc., Volume 6 (1955), pp. 771-782 | DOI | MR | Zbl
[11] Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. Math. (2), Volume 191 (2020) no. 1, pp. 213-328 | DOI | MR | Zbl
[12] Uniqueness of vortexless Ginzburg–Landau type minimizers in two dimensions, Calc. Var. Partial Differ. Equ., Volume 46 (2013) no. 3-4, pp. 523-554 | DOI | MR | Zbl
[13] Extremal functions for the Trudinger–Moser inequality in dimensions, Comment. Math. Helv., Volume 67 (1992) no. 3, pp. 471-497 | DOI | MR | Zbl
[14] Bounded analytic functions, Graduate Texts in Mathematics, 236, Springer, 2007 | DOI | MR | Zbl
[15] Min-max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differ. Geom., Volume 108 (2018) no. 1, pp. 91-133 | DOI | MR | Zbl
[16] Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics, 150, Cambridge University Press, 2002 (translated from the 1996 French original, with a foreword by James Eells) | DOI | MR | Zbl
[17] Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1. Teichmüller theory, Matrix Editions, Ithaca, NY, 2006 (with contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra. with forewords by William Thurston and Clifford Earle) | MR | Zbl
[18] Renormalized energy between vortices in some Ginzburg–Landau models on 2-dimensional Riemannian manifolds, Arch. Ration. Mech. Anal., Volume 239 (2021) no. 3, pp. 1577-1666 | DOI | MR | Zbl
[19] On the uniqueness of minimisers of Ginzburg–Landau functionals, Ann. Sci. Éc. Norm. Supér. (4), Volume 53 (2020) no. 3, pp. 589-613 | DOI | MR | Zbl
[20] Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal., Volume 30 (1999) no. 4, pp. 721-746 | DOI | MR | Zbl
[21] Conformal geometry. Computational algorithms and engineering applications, Springer, 2018 | DOI | MR | Zbl
[22] On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl
[23] Estimates for the energy density of critical points of a class of conformally invariant variational problems, Adv. Calc. Var., Volume 6 (2013) no. 4, pp. 391-413 | DOI | MR | Zbl
[24] Existence of min-max free boundary disks realizing the width of a manifold, Adv. Math., Volume 352 (2019), pp. 326-371 | DOI | MR | Zbl
[25] Loewner Energy as the Renormalised Energy of Moving Frames and Surfaces of Finite Willmore Energy Bounding Weil–Petersson Curves (2021) (preprint)
[26] Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc., Volume 12 (2010) no. 5, pp. 1069-1096 | DOI | MR | Zbl
[27] Ginzburg–Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 2, pp. 875-935 | DOI | MR | Zbl
[28] A boundary value problem related to the Ginzburg–Landau model, Commun. Math. Phys., Volume 142 (1991) no. 1, pp. 1-23 | DOI | MR | Zbl
[29] Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems, ESAIM, Control Optim. Calc. Var., Volume 27 (2021), 34 | DOI | MR | Zbl
[30] Linear and nonlinear aspects of vortices. The Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser, 2000 | DOI | MR | Zbl
[31] On the basic concentration estimate for the Ginzburg–Landau equation, Differ. Integral Equ., Volume 11 (1998) no. 5, pp. 771-779 | MR | Zbl
[32] Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer, 1992 | DOI | MR | Zbl
[33] Asymptotic analysis for the Ginzburg-Landau equations, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 2 (1999) no. 3, pp. 537-575 | MR | Zbl
[34] Weak immersions of surfaces with -bounded second fundamental form, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society; Institute for Advanced Study, 2016, pp. 303-384 | DOI | MR | Zbl
[35] The Loewner energy of loops and regularity of driving functions, Int. Math. Res. Not., Volume 2021 (2021) no. 10, pp. 7715-7763 | DOI | MR | Zbl
[36] Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., Volume 152 (1998) no. 2, pp. 379-403 | DOI | MR | Zbl
[37] Erratum: “Lower bounds for the energy of unit vector fields and applications” [J. Funct. Anal. 152 (1998), no. 2, 379–403; MR1607928 (99b:58056)], J. Funct. Anal., Volume 171 (2000) no. 1, p. 233 | DOI | MR | Zbl
[38] Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2007 | DOI | MR | Zbl
[39] Estimation of the conformal factor under bounded Willmore energy, Math. Z., Volume 274 (2013) no. 3-4, pp. 1341-1383 | DOI | MR | Zbl
[40] A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Commun. Partial Differ. Equations, Volume 19 (1994) no. 1-2, pp. 277-319 | DOI | MR | Zbl
[41] On the asymptotic behavior of minimizers of the Ginzburg–Landau model in dimensions, Differ. Integral Equ., Volume 7 (1994) no. 5-6, pp. 1613-1624 | MR | Zbl
[42] Erratum: “On the asymptotic behavior of minimizers of the Ginzburg–Landau model in dimensions”, Differ. Integral Equ., Volume 8 (1995) no. 1, p. 224 | MR | Zbl
[43] Weil–Petersson metric on the universal Teichmüller space, Memoirs of the American Mathematical Society, 861, American Mathematical Society, 2006 | DOI | Zbl
[44] Equivalent descriptions of the Loewner energy, Invent. Math., Volume 218 (2019) no. 2, pp. 573-621 | DOI | MR | Zbl
[45] Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer, 1983 | DOI | MR | Zbl
[46] Slit map: conformal parameterization for multiply connected surfaces, Advances in geometric modeling and processing. GMP 2008 (Lecture Notes in Computer Science), Volume 4975, Springer, 2008, pp. 410-422 | DOI | MR
Cité par Sources :