Relative Trisections of Fiber Bundles over the Circle
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1373-1412.

Nous construisons une trisection pour un fibré sur le cercle, orienté et compact, à partir d’un scindement de Heegaard suturé de la fibre. Nous donnons un algorithme pour construire les diagrammes de trisection relatifs associés, à partir d’un diagramme de Heegaard suturé de la fibre. Enfin, nous recollons nos diagrammes à des diagrammes de trisections relatifs déjà existants, retrouvant ainsi les trisections de fibrés sur le cercle fermés, les trisections de variétés spun, et produisant des trisections pour les livres ouverts de dimension 4.

For an oriented 4-dimensional fiber bundle over S 1 , we build a relative trisection from a sutured Heegaard splitting of the fiber. We provide an algorithm to explicitly construct the associated relative trisection diagram, from a sutured Heegaard diagram of the fiber. As an application, we glue our relative trisection diagrams with existing diagrams to recover trisected closed fiber bundles over S 1 and trisected spun manifolds, and to provide trisections for 4-dimensional open-books.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1801

Rudy Dissler 1

1 Institut de Mathématiques de Marseille (I2M), Centre de Mathématiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_5_1373_0,
     author = {Rudy Dissler},
     title = {Relative {Trisections} of {Fiber} {Bundles} over the {Circle}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1373--1412},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {5},
     year = {2024},
     doi = {10.5802/afst.1801},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1801/}
}
TY  - JOUR
AU  - Rudy Dissler
TI  - Relative Trisections of Fiber Bundles over the Circle
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1373
EP  - 1412
VL  - 33
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1801/
DO  - 10.5802/afst.1801
LA  - en
ID  - AFST_2024_6_33_5_1373_0
ER  - 
%0 Journal Article
%A Rudy Dissler
%T Relative Trisections of Fiber Bundles over the Circle
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1373-1412
%V 33
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1801/
%R 10.5802/afst.1801
%G en
%F AFST_2024_6_33_5_1373_0
Rudy Dissler. Relative Trisections of Fiber Bundles over the Circle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1373-1412. doi : 10.5802/afst.1801. https://afst.centre-mersenne.org/articles/10.5802/afst.1801/

[1] Maciej Borodzik; András Némethi; Andrew Ranicki Morse theory for manifolds with boundary, Algebr. Geom. Topol., Volume 16 (2016) no. 2, pp. 971-1023 | DOI | MR | Zbl

[2] Nickolas A. Castro Relative trisections of smooth 4-manifolds with boundary, Ph. D. Thesis, University of Georgia, Athens, USA (2016)

[3] Nickolas A. Castro; David T. Gay; Juanita Pinzón-Caicedo Diagrams for relative trisections, Pac. J. Math., Volume 294 (2018) no. 2, pp. 275-305 | DOI | MR | Zbl

[4] Nickolas A. Castro; David T. Gay; Juanita Pinzón-Caicedo Trisections of 4-manifolds with boundary, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 43, pp. 10861-10868 | DOI | MR | Zbl

[5] Nickolas A. Castro; Burak Ozbagci Trisections of 4-manifolds via Lefschetz fibrations (2017) | arXiv

[6] David Gabai Foliations and the topology of 3-manifolds, Bull. Am. Math. Soc., Volume 8 (1983) no. 1, pp. 77-80 | DOI | MR | Zbl

[7] David T. Gay; Robion Kirby Trisecting 4-manifolds, Geom. Topol., Volume 20 (2016) no. 6, pp. 3097-3132 | DOI | MR | Zbl

[8] David T. Gay; Jeffrey Meier Doubly pointed trisection diagrams and surgery on 2-knots, Math. Proc. Camb. Philos. Soc., Volume 172 (2022) no. 1, pp. 163-195 | DOI | MR | Zbl

[9] Gabriel Islambouli Nielsen equivalence and trisections, Geom. Dedicata, Volume 214 (2021) no. 1, pp. 303-317 | DOI | MR | Zbl

[10] András Juhász Holomorphic discs and sutured manifolds, Algebr. Geom. Topol., Volume 6 (2006) no. 3, pp. 1429-1457 | DOI | MR | Zbl

[11] Marc Kegel; Felix Schmäschke Trisecting a 4-dimensional book into three chapters, Geom. Dedicata, Volume 218 (2024) no. 4, 86 | DOI | MR

[12] Seungwon Kim; Maggie Miller Trisections of surface complements and the Price twist, Algebr. Geom. Topol., Volume 20 (2020) no. 1, pp. 343-373 | DOI | MR | Zbl

[13] Dale Koenig Trisections of 3-manifold bundles over S 1 , Algebr. Geom. Topol., Volume 21 (2021) no. 6, pp. 2677-2702 | DOI | MR

[14] Antoni A. Kosinski Differential manifolds, Academic Press Inc., 2013 | MR | Zbl

[15] Jeffrey Meier Trisections and spun 4-manifolds (2017) | arXiv

[16] Jeffrey Meier; Alexander Zupan Genus two trisections are standard, Geom. Topol., Volume 21 (2017) no. 3, pp. 1583-1630 | DOI | MR | Zbl

[17] Marla Williams Trisections of flat surface bundles over surfaces, Ph. D. Thesis, University of Nebraska-Lincoln, Lincoln, USA (2020)

Cité par Sources :