Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1413-1485.

Nous étudions dans cet article les grandes déviations et les grandes déviations locales pour des sommes de variables aléatoires réelles i.i.d. dans le domaine d’attraction d’une loi α-stable, α(0,2], en mettant l’accent sur le cas α=2. Il y a deux scénarios différents : soit la déviation est réalisée par un comportement collectif où toutes les variables sommées contribuent à la déviation (un scénario gaussien), ou bien une seule des variables est atypiquement grande et contribue à la déviation (un scénario d’un unique grand saut). De tels résultats sont connus quand α(0,2) (les grandes déviations suivent toujours le scénario d’un grand saut) ou quand les variables admettent un moment d’ordre 2+δ pour un δ>0. Nous étendons ces résultats, en incluant en particulier le cas où la distribution possède une queue à droite à variation régulière d’indice -2 (traitant le cas de variables de variance infinie dans le domaine d’attraction de la loi normale). Nous identifions le seuil pour la transition entre le régime gaussien et le régime de grand saut ; ce seuil est légèrement plus grand lorsque l’on considère les grandes déviations locales comparées aux grandes déviations intégrées. De plus, nous complétons nos résultats en décrivant le comportement de la somme et de la plus grande variable sommée conditionnellement à avoir une grande déviation (ou une grande déviation locale), pour tout α(0,2], à la fois dans le régime gaussien et dans le régime d’un grand saut. Comme application, nous montrons comment nos résultats peuvent être utilisés pour étudier le phénomène de condensation dans le processus de rang zéro (zero-range process) de densité critique, étendant le spectre des paramètres précédemment considérés dans la littérature.

This article studies large and local large deviations for sums of i.i.d. real-valued random variables in the domain of attraction of an α-stable law, α(0,2], with emphasis on the case α=2. There are two different scenarios: either the deviation is realised via a collective behaviour with all summands contributing to the deviation (a Gaussian scenario), or a single summand is atypically large and contributes to the deviation (a one-big-jump scenario). Such results are known when α(0,2) (large deviations always follow a one big-jump scenario) or when the random variables admit a moment of order 2+δ for some δ>0. We extend these results, including in particular the case where the right tail is regularly varying with index -2 (treating cases with infinite variance in the domain of attraction of the normal law). We identify the threshold for the transition between the Gaussian and the one-big-jump regimes; it is slightly larger when considering local large deviations compared to integral large deviations. Additionally, we complement our results by describing the behaviour of the sum and of the largest summand conditionally on a (local) large deviation, for any α(0,2], both in the Gaussian and in the one-big-jump regimes. As an application, we show how our results can be used in the study of condensation phenomenon in the zero-range process at the critical density, extending the range of parameters previously considered in the literature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1802
Classification : 60F10, 60G50
Mots-clés : Large deviation, Local large deviation, Extended & intermediate regular variation, Phase transition, One-big-jump phenomenon, Condensation, $\alpha $-stable law

Quentin Berger 1 ; Matthias Birkner 2 ; Linglong Yuan 3

1 Université Sorbonne Paris Nord, Laboratoire d’Analyse, Géométrie et Applications, CNRS UMR 7539. 99 Av. J-B Clément, 93430 Villetaneuse, France & Institut Universitaire de France, France
2 Johannes-Gutenberg-Universität Mainz, Institut für Mathematik. Staudingerweg 9, 55128 Mainz, Germany
3 University of Liverpool, Department of Mathematical Sciences. Peach Street, L69 7ZL, Liverpool, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_5_1413_0,
     author = {Quentin Berger and Matthias Birkner and Linglong Yuan},
     title = {Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1413--1485},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {5},
     year = {2024},
     doi = {10.5802/afst.1802},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1802/}
}
TY  - JOUR
AU  - Quentin Berger
AU  - Matthias Birkner
AU  - Linglong Yuan
TI  - Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1413
EP  - 1485
VL  - 33
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1802/
DO  - 10.5802/afst.1802
LA  - en
ID  - AFST_2024_6_33_5_1413_0
ER  - 
%0 Journal Article
%A Quentin Berger
%A Matthias Birkner
%A Linglong Yuan
%T Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1413-1485
%V 33
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1802/
%R 10.5802/afst.1802
%G en
%F AFST_2024_6_33_5_1413_0
Quentin Berger; Matthias Birkner; Linglong Yuan. Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1413-1485. doi : 10.5802/afst.1802. https://afst.centre-mersenne.org/articles/10.5802/afst.1802/

[1] Inés Armendáriz; Stefan Grosskinsky; Michail Loulakis Zero-range condensation at criticality, Stochastic Processes Appl., Volume 123 (2013) no. 9, pp. 3466-3496 | DOI | MR | Zbl

[2] Inés Armendáriz; Michail Loulakis Thermodynamic limit for the invariant measures in supercritical zero range processes, Probab. Theory Relat. Fields, Volume 145 (2009) no. 1, pp. 175-188 | DOI | MR | Zbl

[3] Sergej Beck; Jochen Blath; Michael Scheutzow A new class of large claim size distributions: Definition, properties, and ruin theory, Bernoulli, Volume 21 (2015) no. 4, pp. 2457-2483 | DOI | MR | Zbl

[4] Quentin Berger Notes on random walks in the Cauchy domain of attraction, Probab. Theory Relat. Fields, Volume 175 (2019) no. 1, pp. 1-44 | DOI | MR | Zbl

[5] Quentin Berger Strong renewal theorems and local large deviations for multivariate random walks and renewals, Electron. J. Probab., Volume 24 (2019), 46, 47 pages | DOI | MR | Zbl

[6] Nicholas H. Bingham; Charles M. Goldie; Jozef L. Teugels Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1989 | MR | Zbl

[7] Matthias Birkner; Huili Liu; Anja Sturm Coalescent results for diploid exchangeable population models, Electron. J. Probab., Volume 23 (2018), 49, 44 pages | DOI | MR | Zbl

[8] Matthias Birkner; Linglong Yuan A diploid population model incorporating selection, mutation and possibly highly skewed offspring distributions (2025) (manuscript in preparation)

[9] Aleksandr A. Borovkov Large deviations probabilities for random walks in the absence of finite expectations of jumps, Probab. Theory Relat. Fields, Volume 125 (2003) no. 3, pp. 421-446 | DOI | MR | Zbl

[10] Francesco Caravenna; Ronald A. Doney Local large deviations and the strong renewal theorem, Electron. J. Probab., Volume 24 (2019), 72, 48 pages | DOI | MR | Zbl

[11] Daren B. H. Cline Intermediate regular and Π variation, Proc. Lond. Math. Soc. (3), Volume 68 (1994) no. 3, pp. 594-616 | DOI | MR | Zbl

[12] Daren B. H. Cline; Tailen Hsing Large deviation probabilities for sums of random variables with heavy or subexponential tails, 1998 (https://people.tamu.edu/~dcline/Papers/large5.pdf)

[13] Denis Denisov; Antonius Bernardus Dieker; Vsevolod Shneer Large deviations for random walks under subexponentiality: the big-jump domain, Ann. Probab., Volume 36 (2008) no. 5, pp. 1946-1991 | DOI | MR | Zbl

[14] Ronald A. Doney A large deviation local limit theorem, Math. Proc. Camb. Philos. Soc., Volume 105 (1989) no. 3, pp. 575-577 | DOI | MR | Zbl

[15] Ronald A. Doney One-sided local large deviation and renewal theorems in the case of infinite mean, Probab. Theory Relat. Fields, Volume 107 (1997) no. 4, pp. 451-465 | DOI | MR | Zbl

[16] Ronald A. Doney A local limit theorem for moderate deviations, Bull. Lond. Math. Soc., Volume 33 (2001) no. 1, pp. 100-108 | DOI | MR | Zbl

[17] Martin R. Evans Phase transitions in one-dimensional nonequilibrium systems, Braz. J. Phys., Volume 30 (2000), pp. 42-57 | DOI

[18] Willliam Feller An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, 1966 | Zbl

[19] Sergey G. Foss; Dmitry Korshunov; Stan Zachary An introduction to heavy-tailed and subexponential distributions, Springer Series in Operations Research and Financial Engineering, Springer, 2013 | DOI | MR | Zbl

[20] Sergey G. Foss; Anatolii A. Puhalskii On the limit law of a random walk conditioned to reach a high level, Stochastic Processes Appl., Volume 121 (2011) no. 2, pp. 288-313 | DOI | MR | Zbl

[21] Rita Giuliano; Michel Weber Approximate local limit theorems with effective rate and application to random walks in random scenery, Bernoulli, Volume 23 (2017) no. 4B, pp. 3268-3310 | DOI | MR | Zbl

[22] Boris V. Gnedenko; Andrey N. Kolmogorov Limit distributions for sums of independent random variables, Addison-Wesley Mathematics Series, Addison-Wesley Publishing Group, 1954 | MR | Zbl

[23] Stefan Großkinsky; Gunter M. Schütz; Herbert Spohn Condensation in the zero range process: stationary and dynamical properties, J. Stat. Phys., Volume 113 (2003) no. 3, pp. 389-410 | DOI | MR | Zbl

[24] Intae Jeon; Peter March; Boris Pittel Size of the largest cluster under zero-range invariant measures, Ann. Probab., Volume 28 (2000) no. 3, pp. 1162-1194 | DOI | MR | Zbl

[25] Céline Kerriou; Peter Mörters The fewest-big-jumps principle and an application to random graphs (2022) | arXiv

[26] Igor Kortchemski Limit theorems for conditioned non-generic Galton–Watson trees, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 51 (2015) no. 2, pp. 489-511 | DOI | Numdam | MR | Zbl

[27] Igor Kortchemski; Loïc Richier Condensation in critical Cauchy Bienaymé–Galton–Watson trees, Ann. Appl. Probab., Volume 29 (2019) no. 3, pp. 1837-1877 | DOI | Zbl

[28] Igor Kortchemski; Loïc Richier The boundary of random planar maps via looptrees, Ann. Fac. Sci. Toulouse, Math. (6), Volume 29 (2020) no. 2, pp. 391-430 | DOI | Numdam | MR | Zbl

[29] Wanda Matuszewska On a generalization of regularly increasing functions, Stud. Math., Volume 24 (1964) no. 3, pp. 271-279 | DOI | MR | Zbl

[30] Ian Melbourne; Dalia Terhesiu Analytic proof of multivariate stable local large deviations and application to deterministic dynamical systems, Electron. J. Probab., Volume 27 (2022), pp. 1-17 | DOI | MR | Zbl

[31] Thomas Mikosch; Aleksandr V. Nagaev Large deviations of heavy-tailed sums with applications in insurance, Extremes, Volume 1 (1998) no. 1, pp. 81-110 | DOI | MR | Zbl

[32] Anatolii A. Mogul’skii An integro-local theorem that is applicable on the whole half-axis for sums of random variables with regularly varying distributions, Sib. Mat. Zh., Volume 49 (2008) no. 4, pp. 837-854 | Zbl

[33] A. B. Mukhin Local limit theorems for lattice random variables, Theory Probab. Appl., Volume 36 (1991) no. 4, pp. 698-713 | DOI | Zbl

[34] Sergey V. Nagaev Large deviations of sums of independent random variables, Ann. Probab., Volume 7 (1979), pp. 745-789 | DOI | MR | Zbl

[35] Leonid V. Rozovskii Probabilities of large deviations of sums of independent random variables with common distribution function in the domain of attraction of the normal law, Theory Probab. Appl., Volume 34 (1990) no. 4, pp. 625-644 | DOI | Zbl

[36] Leonid V. Rozovskii Probabilities of large deviations on the whole axis, Theory Probab. Appl., Volume 38 (1993) no. 1, pp. 53-79 | Zbl

[37] Jason Schweinsberg Coalescent processes obtained from supercritical Galton–Watson processes, Stochastic Processes Appl., Volume 106 (2003) no. 1, pp. 107-139 | DOI | Zbl

[38] Tatpon Siripraparat; Kritsana Neammanee An improvement of convergence rate in the local limit theorem for integral-valued random variables, J. Inequal. Appl., Volume 2021 (2021) no. 1, 57, 18 pages | DOI | Zbl

[39] Charles Stone On local and ratio limit theorems, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Vol. II: Contributions to probability theory. Part 2., University of California Press (1967), pp. 217-224 | Zbl

[40] Ward Whitt The Space D, Stochastic-process limits: an introduction to stochastic-process limits and their application to queues (Springer Series in Operations Research and Financial Engineering), Springer, 2002, pp. 391-426 | DOI

[41] Tiecheng Xu Condensation of the invariant measures of the supercritical zero range processes, J. Stat. Phys., Volume 191 (2024) no. 6, 71 | DOI

Cité par Sources :