Non-noise sensitivity for word hyperbolic groups
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1487-1510.

Nous montrons que les marches aléatoires non élémentaires sur des groupes hyperboliques au sens de Gromov ayant un premier moment fini ne sont pas sensibles au bruit au sens fort pour de petits paramètres de bruit.

We show that non-elementary random walks on word hyperbolic groups with finite first moment are not noise sensitive in a strong sense for small noise parameters.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1803

Ryokichi Tanaka 1

1 Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_5_1487_0,
     author = {Ryokichi Tanaka},
     title = {Non-noise sensitivity for word hyperbolic groups},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1487--1510},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {5},
     year = {2024},
     doi = {10.5802/afst.1803},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1803/}
}
TY  - JOUR
AU  - Ryokichi Tanaka
TI  - Non-noise sensitivity for word hyperbolic groups
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1487
EP  - 1510
VL  - 33
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1803/
DO  - 10.5802/afst.1803
LA  - en
ID  - AFST_2024_6_33_5_1487_0
ER  - 
%0 Journal Article
%A Ryokichi Tanaka
%T Non-noise sensitivity for word hyperbolic groups
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1487-1510
%V 33
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1803/
%R 10.5802/afst.1803
%G en
%F AFST_2024_6_33_5_1487_0
Ryokichi Tanaka. Non-noise sensitivity for word hyperbolic groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1487-1510. doi : 10.5802/afst.1803. https://afst.centre-mersenne.org/articles/10.5802/afst.1803/

[1] Itai Benjamini; Jérémie Brieussel Noise sensitivity of random walks on groups, ALEA Lat. Am. J. Probab. Math. Stat., Volume 20 (2023) no. 2, pp. 1139-1164 | DOI | MR

[2] Mario Bonk; Oded Schramm Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 266-306 | DOI | MR | Zbl

[3] Yves Derriennic Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (Astérisque), Volume 74, Société Mathématique de France, 1980, pp. 183-201 | Numdam | MR | Zbl

[4] Yves Derriennic Entropie, théorèmes limite et marches aléatoires, Probability measures on groups, VIII (Oberwolfach, 1985) (Lecture Notes in Mathematics), Volume 1210, Springer, 1986, pp. 241-284 | DOI | MR | Zbl

[5] Anna Erschler; Vadim A. Kaimanovich Continuity of asymptotic characteristics for random walks on hyperbolic groups, Funkts. Anal. Prilozh., Volume 47 (2013) no. 2, pp. 84-89 | DOI | MR | Zbl

[6] Sur les groupes hyperboliques d’après Mikhael Gromov (Étienne Ghys; Pierre de la Harpe, eds.), Progress in Mathematics, 83, Birkhäuser, 1990 (papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988) | DOI | MR | Zbl

[7] Mikhael L. Gromov Hyperbolic groups, Essays in group theory (Stephen M. Gersten, ed.) (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | Zbl

[8] Vadim A. Kaimanovich The Poisson formula for groups with hyperbolic properties, Ann. Math. (2), Volume 152 (2000) no. 3, pp. 659-692 | DOI | MR | Zbl

[9] Vadim A. Kaimanovich; Anatoliĭ M. Vershik Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | DOI | MR | Zbl

[10] Gil Kalai Three puzzles on mathematics, computation, and games, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 551-606 | DOI | MR | Zbl

[11] Ryokichi Tanaka Dimension of harmonic measures in hyperbolic spaces, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 2, pp. 474-499 | DOI | MR | Zbl

Cité par Sources :