Nous montrons que les marches aléatoires non élémentaires sur des groupes hyperboliques au sens de Gromov ayant un premier moment fini ne sont pas sensibles au bruit au sens fort pour de petits paramètres de bruit.
We show that non-elementary random walks on word hyperbolic groups with finite first moment are not noise sensitive in a strong sense for small noise parameters.
Accepté le :
Publié le :
Ryokichi Tanaka 1

@article{AFST_2024_6_33_5_1487_0, author = {Ryokichi Tanaka}, title = {Non-noise sensitivity for word hyperbolic groups}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1487--1510}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {5}, year = {2024}, doi = {10.5802/afst.1803}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1803/} }
TY - JOUR AU - Ryokichi Tanaka TI - Non-noise sensitivity for word hyperbolic groups JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 1487 EP - 1510 VL - 33 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1803/ DO - 10.5802/afst.1803 LA - en ID - AFST_2024_6_33_5_1487_0 ER -
%0 Journal Article %A Ryokichi Tanaka %T Non-noise sensitivity for word hyperbolic groups %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 1487-1510 %V 33 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1803/ %R 10.5802/afst.1803 %G en %F AFST_2024_6_33_5_1487_0
Ryokichi Tanaka. Non-noise sensitivity for word hyperbolic groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 5, pp. 1487-1510. doi : 10.5802/afst.1803. https://afst.centre-mersenne.org/articles/10.5802/afst.1803/
[1] Noise sensitivity of random walks on groups, ALEA Lat. Am. J. Probab. Math. Stat., Volume 20 (2023) no. 2, pp. 1139-1164 | DOI | MR
[2] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 266-306 | DOI | MR | Zbl
[3] Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (Astérisque), Volume 74, Société Mathématique de France, 1980, pp. 183-201 | Numdam | MR | Zbl
[4] Entropie, théorèmes limite et marches aléatoires, Probability measures on groups, VIII (Oberwolfach, 1985) (Lecture Notes in Mathematics), Volume 1210, Springer, 1986, pp. 241-284 | DOI | MR | Zbl
[5] Continuity of asymptotic characteristics for random walks on hyperbolic groups, Funkts. Anal. Prilozh., Volume 47 (2013) no. 2, pp. 84-89 | DOI | MR | Zbl
[6] Sur les groupes hyperboliques d’après Mikhael Gromov (Étienne Ghys; Pierre de la Harpe, eds.), Progress in Mathematics, 83, Birkhäuser, 1990 (papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988) | DOI | MR | Zbl
[7] Hyperbolic groups, Essays in group theory (Stephen M. Gersten, ed.) (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | Zbl
[8] The Poisson formula for groups with hyperbolic properties, Ann. Math. (2), Volume 152 (2000) no. 3, pp. 659-692 | DOI | MR | Zbl
[9] Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | DOI | MR | Zbl
[10] Three puzzles on mathematics, computation, and games, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 551-606 | DOI | MR | Zbl
[11] Dimension of harmonic measures in hyperbolic spaces, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 2, pp. 474-499 | DOI | MR | Zbl
Cité par Sources :